2 resultados para AlInGaN quaternary alloys
em Universidad de Alicante
Resumo:
Quaternary ammonium-functionalized silica materials were synthesized and applied for solid-phase extraction (SPE) of aromatic amines, which are classified as priority pollutants by US Environmental Protection Agency. Hexamethylenetetramine used for silica surface modification for the first time was employed as SPE sorbent under normal phase conditions. Hexaminium-functionalized silica demonstrated excellent extraction efficiencies for o-toluidine, 4-ethylaniline and quinoline (recoveries 101–107%), while for N,N-dimethylaniline and N-isopropylaniline recoveries were from low to moderate (14–46%). In addition, the suitability of 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica as SPE sorbent was tested under normal phase conditions. The recoveries achieved for the five aromatic amines ranged from 89 to 99%. The stability of the sorbent was evaluated during and after 150 extractions. Coefficients of variation between 4.5 and 10.2% proved a high stability of the synthesized sorbent. Elution was carried out using acetonitrile in the case of hexaminium-functionalized silica and water for 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent. After the extraction the analytes were separated and detected by liquid chromatography ultraviolet detection (LC-UV). The retention mechanism of the materials was primarily based on polar hydrogen bonding and π–π interactions. Comparison made with activated silica proved the quaternary ammonium-functionalized materials to offer different selectivity and better extraction efficiencies for aromatic amines. Finally, 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent was successfully tested for the extraction of wastewater and soil samples.
Resumo:
The knowledge of thermophysical properties of liquid Co-Si alloys is a key requirement for manufacturing of composite materials by infiltration method. Despite this need, the experimental and predicted property data of the Co-Si system are scarce and often inconsistent between the various sources. In the present work the mixing behaviour of Co-Si melts has been analysed through the study of the concentration dependence of various thermodynamic, surface (surface tension and surface composition) and structural properties (concentration fluctuations in the long-wavelength limit and chemical short-range order parameter) in the framework of the Compound Formation Model (CFM) and Quasi Chemical Approximation for regular solutions (QCA). In addition, the surface tension of the Co22·5Si77.5 (in at%) eutectic alloy, that is proposed to be used as the infiltrant, has been measured by the pendant drop method at temperatures ranging from 1593 to 1773 K. The results obtained were discussed with respect to both, temperature and concentration, and subsequently compared with the model predictions and literature data.