2 resultados para Ageing of population

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a sample of 339 university graduates from the University of Alicante (Spain) three years after completion of their studies, we studied the relationships between general intelligence (GI), personality traits, emotional intelligence (EI), academic performance, and occupational attainment and compared the results of conventional regression analysis with the results obtained from applying regression mixture models. The results reveal the influence of unobserved population heterogeneity (latent class) on the relationship between predictors and criteria and the improvement in the prediction obtained from applying regression mixture models compared to applying a conventional regression model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to confidentiality considerations, the microdata available from the 2011 Spanish Census have been codified at a provincial (NUTS 3) level except when the municipal (LAU 2) population exceeds 20,000 inhabitants (a requirement that is met by less than 5% of all municipalities). For the remainder of the municipalities within a given province, information is only provided for their classification in wide population intervals. These limitations, hampering territorially-focused socio-economic analyses, and more specifically, those related to the labour market, are observed in many other countries. This article proposes and demonstrates an automatic procedure aimed at delineating a set of areas that meet such population requirements and that may be used to re-codify the geographic reference in these cases, thereby increasing the territorial detail at which individual information is available. The method aggregates municipalities into clusters based on the optimisation of a relevant objective function subject to a number of statistical constraints, and is implemented using evolutionary computation techniques. Clusters are defined to fit outer boundaries at the level of labour market areas.