3 resultados para Aerial photography in soil surveys.

em Universidad de Alicante


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background To analyze and compare the relationship between anterior and posterior corneal shape evaluated by a tomographic system combining the Scheimpflug photography and Placido-disc in keratoconus and normal healthy eyes, as well as to evaluate its potential diagnostic value. Methods Comparative case series including a sample of 161 eyes of 161 subjects with ages ranging from 7 to 66 years and divided into two groups: normal group including 100 healthy eyes of 100 subjects, and keratoconus group including 61 keratoconus eyes of 61 patients. All eyes received a comprehensive ophthalmologic examination including an anterior segment analysis with the Sirius system (CSO). Antero-posterior ratios for corneal curvature (k ratio) and shape factor (p ratio) were calculated. Logistic regression analysis was used to evaluate if some antero–posterior ratios combined with other clinical parameters were predictors of the presence of keratoconus. Results No statistically significant differences between groups were found in the antero–posterior k ratios for 3-, 5- and 7-mm diameter corneal areas (p ≥ 0.09). The antero–posterior p ratio for 4.5- and 8-mm diameter corneal areas was significantly higher in the normal group than in the keratoconus group (p < 0.01). The k ratio for 3, 5, and 7 mm was significantly higher in the keratoconus grade IV subgroup than in the normal group (p < 0.01). Furthermore, significant differences were found in the p ratio between the normal group and the keratoconus grade II subgroup (p ≤ 0.01). Finally, the logistic regression analysis identified as significant independent predictors of the presence of keratoconus (p < 0.01) the 8-mm anterior shape factor, the anterior chamber depth, and the minimal corneal thickness. Conclusions The antero-posterior k and p ratios are parameters with poor prediction ability for keratoconus, in spite of the trend to the presence of more prolate posterior corneal surfaces compared to the anterior in keratoconus eyes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim of study. Orchidaceae has the largest number of species of any family in the plant kingdom. This family is subject to a high risk of extinction in natural environments, such as natural parks and protected areas. Recent studies have shown the prevalence of many species of orchids to be linked to fungal soil diversity, due to their myco-heterotrophic behaviour. Plant communities determine fungal soil diversity, and both generate optimal conditions for orchid development. Area of study. The work was carried out in n the two most important natural parks in Alicante (Font Roja and Sierra Mariola), in South-eastern of Spain. Material and Methods. We designed a molecular tool to monitor the presence of Russula spp. in soil and orchids roots, combined with phytosociological methods. Main results. Using a PCR-based method, we detected the presence in the soil and Limodorum abortivum orchid roots of the mycorrhizal fungi Russula spp. The species with highest coverage was Quercus rotundifolia in areas where the orchid was present. Research highlights. We present a useful tool based on PCR to detect the presence of Russula spp. in a natural environment. These results are consistent with those obtained in different studies that linked the presence of the mycorrhizal fungi Russula spp. in roots of the species Limodorum and the interaction between these fungal species and Quercus ilex trees in Mediterranean forest environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Determination of reliable solute transport parameters is an essential aspect for the characterization of the mechanisms and processes involved in solute transport (e.g., pesticides, fertilizers, contaminants) through the unsaturated zone. A rapid inexpensive method to estimate the dispersivity parameter at the field scale is presented herein. It is based on the quantification by the X-ray fluorescence solid-state technique of total bromine in soil, along with an inverse numerical modeling approach. The results show that this methodology is a good alternative to the classic Br− determination in soil water by ion chromatography. A good agreement between the observed and simulated total soil Br is reported. The results highlight the potential applicability of both combined techniques to infer readily solute transport parameters under field conditions.