2 resultados para Adverbial Phrase

em Universidad de Alicante


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statistical machine translation (SMT) is an approach to Machine Translation (MT) that uses statistical models whose parameter estimation is based on the analysis of existing human translations (contained in bilingual corpora). From a translation student’s standpoint, this dissertation aims to explain how a phrase-based SMT system works, to determine the role of the statistical models it uses in the translation process and to assess the quality of the translations provided that system is trained with in-domain goodquality corpora. To that end, a phrase-based SMT system based on Moses has been trained and subsequently used for the English to Spanish translation of two texts related in topic to the training data. Finally, the quality of this output texts produced by the system has been assessed through a quantitative evaluation carried out with three different automatic evaluation measures and a qualitative evaluation based on the Multidimensional Quality Metrics (MQM).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an algorithm for identifying noun-phrase antecedents of pronouns and adjectival anaphors in Spanish dialogues. We believe that anaphora resolution requires numerous sources of information in order to find the correct antecedent of the anaphor. These sources can be of different kinds, e.g., linguistic information, discourse/dialogue structure information, or topic information. For this reason, our algorithm uses various different kinds of information (hybrid information). The algorithm is based on linguistic constraints and preferences and uses an anaphoric accessibility space within which the algorithm finds the noun phrase. We present some experiments related to this algorithm and this space using a corpus of 204 dialogues. The algorithm is implemented in Prolog. According to this study, 95.9% of antecedents were located in the proposed space, a precision of 81.3% was obtained for pronominal anaphora resolution, and 81.5% for adjectival anaphora.