3 resultados para Acyclic Permutation
em Universidad de Alicante
Resumo:
Subpixel methods increase the accuracy and efficiency of image detectors, processing units, and algorithms and provide very cost-effective systems for object tracking. A recently proposed method permits micropixel and submicropixel accuracies providing certain design constraints on the target are met. In this paper, we explore the use of Costas arrays - permutation matrices with ideal auto-ambiguity properties - for the design of such targets.
Resumo:
Aqueous 2,2-dimethoxyacetaldehyde (60% wt solution) is used as an acceptor in aldol reactions, with cyclic and acyclic ketones and aldehydes as donors, organocatalyzed by 10 mol % of N-tosyl-(Sa)-binam-l-prolinamide [(Sa)-binam-sulfo-l-Pro] at rt under solvent-free conditions. The corresponding monoprotected 2-hydroxy-1,4-dicarbonyl compounds are obtained in good yields and with high levels of diastereo- and enantioselectivity mainly as anti-aldols. In the case of 4-substituted cyclohexanones a desymmetrization process takes place to mainly afford the anti,anti-aldols. 2,2-Dimethyl-1,3-dioxan-5-one allows the synthesis of a useful intermediate for the preparation of carbohydrates in higher yield, de and ee than with l-Pro as the organocatalyst.
Resumo:
Azomethine imines are considered 1,3-dipoles of the aza-allyl type which are transient intermediates and should be generated in situ but can also be stable and isolable compounds. They react with electron-rich and electron-poor olefins as well as with acetylenic compounds and allenoates mainly by a [3 + 2] cycloaddition but they can also take part in [3 + 3], [4 + 3], [3 + 2 + 2] and [5 + 3] with different dipolarophiles. These 1,3-dipolar cycloadditions (1,3-DC) can be performed not only under thermal or microwave conditions but also using metallo- and organocatalytic systems. In recent years enantiocatalyzed 1,3-dipolar cycloadditions have been extensively considered and applied to the synthesis of a great variety of dinitrogenated heterocycles with biological activity. Acyclic azomethine imines derived from mono and disubstituted hydrazones could be generated by prototropy under heating or by using Lewis or Brønsted acids to give, after [3 + 2] cycloadditions, pyrazolidines and pyrazolines. Cyclic azomethine imines, incorporating a C–N bond in a ring, such as isoquinolinium imides are the most widely used dipoles in normal and inverse-electron demand 1,3-DC allowing the synthesis of tetrahydro-, dihydro- and unsaturated pyrazolo[1,5-a]isoquinolines in racemic and enantioenriched forms with interesting biological activity. Pyridinium and quinolinium imides give the corresponding pyrazolopyridines and indazolo[3,2-a]isoquinolines, respectively. In the case of cyclic azomethine imines with an N–N bond incorporated into a ring, N-alkylidene-3-oxo-pyrazolidinium ylides are the most popular stable and isolated dipoles able to form dinitrogen-fused saturated and unsaturated pyrazolopyrazolones as racemic or enantiomerically enriched compounds present in many pharmaceuticals, agrochemicals and other useful chemicals.