7 resultados para Active appearance model
em Universidad de Alicante
Resumo:
It has been reported that for certain colour samples, the chromatic adaptation transform CAT02 imbedded in the CIECAM02 colour appearance model predicts corresponding colours with negative tristimulus values (TSVs), which can cause problems in certain applications. To overcome this problem, a mathematical approach is proposed for modifying CAT02. This approach combines a non-negativity constraint for the TSVs of corresponding colours with the minimization of the colour differences between those values for the corresponding colours obtained by visual observations and the TSVs of the corresponding colours predicted by the model, which is a constrained non-linear optimization problem. By solving the non-linear optimization problem, a new matrix is found. The performance of the CAT02 transform with various matrices including the original CAT02 matrix, and the new matrix are tested using visual datasets and the optimum colours. Test results show that the CAT02 with the new matrix predicted corresponding colours without negative TSVs for all optimum colours and the colour matching functions of the two CIE standard observers under the test illuminants considered. However, the accuracy with the new matrix for predicting the visual data is approximately 1 CIELAB colour difference unit worse compared with the original CAT02. This indicates that accuracy has to be sacrificed to achieve the non-negativity constraint for the TSVs of the corresponding colours.
Resumo:
This paper illustrates how to design a visual experiment to measure color differences in gonioapparent materials and how to assess the merits of different advanced color-difference formulas trying to predict the results of such experiment. Successful color-difference formulas are necessary for industrial quality control and artificial color-vision applications. A color- difference formula must be accurate under a wide variety of experimental conditions including the use of challenging materials like, for example, gonioapparent samples. Improving the experimental design in a previous paper [Melgosaet al., Optics Express 22, 3458-3467 (2014)], we have tested 11 advanced color-difference formulas from visual assessments performed by a panel of 11 observers with normal colorvision using a set of 56 nearly achromatic colorpairs of automotive gonioapparent samples. Best predictions of our experimental results were found for the AUDI2000 color-difference formula, followed by color-difference formulas based on the color appearance model CIECAM02. Parameters in the original weighting function for lightness in the AUDI2000 formula were optimized obtaining small improvements. However, a power function from results provided by the AUDI2000 formula considerably improved results, producing values close to the inter-observer variability in our visual experiment. Additional research is required to obtain a modified AUDI2000 color-difference formula significantly better than the current one.
Resumo:
Many applications including object reconstruction, robot guidance, and. scene mapping require the registration of multiple views from a scene to generate a complete geometric and appearance model of it. In real situations, transformations between views are unknown and it is necessary to apply expert inference to estimate them. In the last few years, the emergence of low-cost depth-sensing cameras has strengthened the research on this topic, motivating a plethora of new applications. Although they have enough resolution and accuracy for many applications, some situations may not be solved with general state-of-the-art registration methods due to the signal-to-noise ratio (SNR) and the resolution of the data provided. The problem of working with low SNR data, in general terms, may appear in any 3D system, then it is necessary to propose novel solutions in this aspect. In this paper, we propose a method, μ-MAR, able to both coarse and fine register sets of 3D points provided by low-cost depth-sensing cameras, despite it is not restricted to these sensors, into a common coordinate system. The method is able to overcome the noisy data problem by means of using a model-based solution of multiplane registration. Specifically, it iteratively registers 3D markers composed by multiple planes extracted from points of multiple views of the scene. As the markers and the object of interest are static in the scenario, the transformations obtained for the markers are applied to the object in order to reconstruct it. Experiments have been performed using synthetic and real data. The synthetic data allows a qualitative and quantitative evaluation by means of visual inspection and Hausdorff distance respectively. The real data experiments show the performance of the proposal using data acquired by a Primesense Carmine RGB-D sensor. The method has been compared to several state-of-the-art methods. The results show the good performance of the μ-MAR to register objects with high accuracy in presence of noisy data outperforming the existing methods.
Resumo:
Comunicación presentada en la VI Conferencia de la Asociación Española para la Inteligencia Artificial (CAEPIA'95), Alicante, 15-17 noviembre 1995.
Resumo:
A hydrological–economic model is introduced to describe the dynamics of groundwater-dependent economics (agriculture and tourism) for sustainable use in sparse-data drylands. The Amtoudi Oasis, a remote area in southern Morocco, in the northern Sahara attractive for tourism and with evidence of groundwater degradation, was chosen to show the model operation. Governing system variables were identified and put into action through System Dynamics (SD) modeling causal diagrams to program basic formulations into a model having two modules coupled by the nexus ‘pumping’: (1) the hydrological module represents the net groundwater balance (G) dynamics; and (2) the economic module reproduces the variation in the consumers of water, both the population and tourists. The model was operated under similar influx of tourists and different scenarios of water availability, such as the wet 2009–2010 and the average 2010–2011 hydrological years. The rise in international tourism is identified as the main driving force reducing emigration and introducing new social habits in the population, in particular concerning water consumption. Urban water allotment (PU) was doubled for less than a 100-inhabitant net increase in recent decades. The water allocation for agriculture (PI), the largest consumer of water, had remained constant for decades. Despite that the 2-year monitoring period is not long enough to draw long-term conclusions, groundwater imbalance was reflected by net aquifer recharge (R) less than PI + PU (G < 0) in the average year 2010–2011, with net lateral inflow from adjacent Cambrian formations being the largest recharge component. R is expected to be much less than PI + PU in recurrent dry spells. Some low-technology actions are tentatively proposed to mitigate groundwater degradation, such as: wastewater capture, treatment, and reuse for irrigation; storm-water harvesting for irrigation; and active maintenance of the irrigation system to improve its efficiency.
Resumo:
The aim of this work is to improve students’ learning by designing a teaching model that seeks to increase student motivation to acquire new knowledge. To design the model, the methodology is based on the study of the students’ opinion on several aspects we think importantly affect the quality of teaching (such as the overcrowded classrooms, time intended for the subject or type of classroom where classes are taught), and on our experience when performing several experimental activities in the classroom (for instance, peer reviews and oral presentations). Besides the feedback from the students, it is essential to rely on the experience and reflections of lecturers who have been teaching the subject several years. This way we could detect several key aspects that, in our opinion, must be considered when designing a teaching proposal: motivation, assessment, progressiveness and autonomy. As a result we have obtained a teaching model based on instructional design as well as on the principles of fractal geometry, in the sense that different levels of abstraction for the various training activities are presented and the activities are self-similar, that is, they are decomposed again and again. At each level, an activity decomposes into a lower level tasks and their corresponding evaluation. With this model the immediate feedback and the student motivation are encouraged. We are convinced that a greater motivation will suppose an increase in the student’s working time and in their performance. Although the study has been done on a subject, the results are fully generalizable to other subjects.
Resumo:
Automatic video segmentation plays a vital role in sports videos annotation. This paper presents a fully automatic and computationally efficient algorithm for analysis of sports videos. Various methods of automatic shot boundary detection have been proposed to perform automatic video segmentation. These investigations mainly concentrate on detecting fades and dissolves for fast processing of the entire video scene without providing any additional feedback on object relativity within the shots. The goal of the proposed method is to identify regions that perform certain activities in a scene. The model uses some low-level feature video processing algorithms to extract the shot boundaries from a video scene and to identify dominant colours within these boundaries. An object classification method is used for clustering the seed distributions of the dominant colours to homogeneous regions. Using a simple tracking method a classification of these regions to active or static is performed. The efficiency of the proposed framework is demonstrated over a standard video benchmark with numerous types of sport events and the experimental results show that our algorithm can be used with high accuracy for automatic annotation of active regions for sport videos.