2 resultados para Ablation in different ambient gas
em Universidad de Alicante
Resumo:
CO2 capture by solid sorbents is a physisorption process in which the gas molecules are adsorbed in a different porosity range, depending on the temperature and pressure of the capture conditions. Accordingly, CO2 capture capacities can be enhanced if the sorbent has a proper porosity development and a suitable pore size distribution. Thus, the main objective of this work is to maximize the CO2 capture capacity at ambient temperature, elucidating which is the most suitable porosity that the adsorbent has to have as a function of the emission source conditions. In order to do so, different activated carbons have been selected and their CO2 capture capacities have been measured. The obtained results show that for low CO2 pressures (e.g., conditions similar to post-combustion processes) the sorbent should have the maximum possible volume of micropores smaller than 0.7 nm. However, the sorbent requires the maximum possible total micropore volume when the capture is performed at high pressures (e.g., conditions similar to oxy-combustion or pre-combustion processes). Finally, this study also analyzes the important influence that the sorbent density has on the CO2 capture capacity, since the adsorbent will be confined in a bed with a restricted volume.
Resumo:
Two microporous hectorites were prepared by conventional and microwave heating, and a delaminated mesoporous hectorite by an ultrasound-assisted synthesis. These three hectorites were impregnated with copper. The characterization techniques used were XRD, N2 adsorption, TEM and H2 reduction after selective surface copper oxidation by N2O (to determine copper dispersion). The catalytic activity for soot combustion of the copper-free and the copper-containing hectorites was tested under a gas mixture of 500 ppm NOx/5% O2/N2 (and 5% O2/N2 in some cases), evaluating their stability through three consecutive soot combustion experiments. The delaminated hectorite showed the highest surface area (353 m2/g) allowing the highest dispersion of copper. This copper-containing catalyst was the most active for soot combustion among those prepared and tested in this study. We have also concluded that the Cu/hectorite-catalyzed soot combustion mechanism is based on the activation of the O2 molecule and not on the NO2-assisted soot combustion.