3 resultados para ATMOSPHERIC CO2

em Universidad de Alicante


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Activated carbons prepared from petroleum pitch and using KOH as activating agent exhibit an excellent behavior in CO2 capture both at atmospheric (∼168 mg CO2/g at 298 K) and high pressure (∼1500 mg CO2/g at 298 K and 4.5 MPa). However, an exhaustive evaluation of the adsorption process shows that the optimum carbon structure, in terms of adsorption capacity, depends on the final application. Whereas narrow micropores (pores below 0.6 nm) govern the sorption behavior at 0.1 MPa, large micropores/small mesopores (pores below 2.0–3.0 nm) govern the sorption behavior at high pressure (4.5 MPa). Consequently, an optimum sorbent exhibiting a high working capacity for high pressure applications, e.g., pressure-swing adsorption units, will require a poorly-developed narrow microporous structure together with a highly-developed wide microporous and small mesoporous network. The appropriate design of the preparation conditions gives rise to carbon materials with an extremely high delivery capacity ∼1388 mg CO2/g between 4.5 MPa and 0.1 MPa. Consequently, this study provides guidelines for the design of carbon materials with an improved ability to remove carbon dioxide from the environment at atmospheric and high pressure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of carbide-derived carbons (CDC) have been prepared starting from TiC and using different chlorine treatment temperatures (500–1200 °C). Contrary to N2 adsorption measurements at −196 °C, CO2 adsorption measurements at room temperature and high pressure (up to 1 MPa) together with immersion calorimetry measurements into dichloromethane suggest that the synthesized CDC exhibit a similar porous structure, in terms of narrow pore volume, independently of the temperature of the reactive extraction treatment used (samples synthesized below 1000 °C). Apparently, these carbide-derived carbons exhibit narrow constrictions were CO2 adsorption under standard conditions (0 °C and atmospheric pressure) is kinetically restricted. The same accounts for a slightly larger molecule as N2 at a lower adsorption temperature (−196 °C), i.e. textural parameters obtained from N2 adsorption measurements on CDC must be underestimated. Furthermore, here we show experimentally that nitrogen exhibits an unusual behavior, poor affinity, on these carbide-derived carbons. CH4 with a slightly larger diameter (0.39 nm) is able to partially access the inner porous structure whereas N2, with a slightly smaller diameter (0.36 nm), does not. Consequently, these CDC can be envisaged as excellent sorbent for selective CO2 capture in flue-gas streams.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of activated carbons were prepared by carbonization of polyaniline at different temperatures, using KOH or K2CO3 as activating agent. Pure microporous or micro/mesoporous activated carbons were obtained depending on the preparation conditions. Carbonization temperature has been proven to be a key parameter to define the textural properties of the carbon when using KOH. Low carbonization temperatures (400–650 °C) yield materials with a highly developed micro- and mesoporous structure, whereas high temperatures (800 °C) yield microporous carbons. Some of the materials prepared using KOH exhibit a BET surface area superior to 4000 m2/g, with total pore volume exceeding 2.5 cm3/g, which are among the largest found for activated carbons. On the other hand, microporous materials are obtained when using K2CO3, independently of carbonization temperature. Some of the materials were tested for CO2 capture due to their high microporosity and N content. The adsorption capacity for CO2 at atmospheric pressure and 0 °C achieves a value of ∼7.6 mmol CO2/g, which is among the largest reported in the literature. This study provides guidelines for the design of activated carbons with a proper N/C ratio for CO2 capture at atmospheric pressure.