4 resultados para ASTRONOMICAL CALIBRATION

em Universidad de Alicante


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a scanning tunnelling microscope or mechanically controllable break junction it has been shown that it is possible to control the formation of a wire made of single gold atoms. In these experiments an interatomic distance between atoms in the chain of ∼3.6 Å was reported which is not consistent with recent theoretical calculations. Here, using precise calibration procedures for both techniques, we measure the length of the atomic chains. Based on the distance between the peaks observed in the chain length histogram we find the mean value of the interatomic distance before chain rupture to be 2.5±0.2 Å. This value agrees with the theoretical calculations for the bond length. The discrepancy with the previous experimental measurements was due to the presence of He gas, that was used to promote the thermal contact, and which affects the value of the work function that is commonly used to calibrate distances in scanning tunnelling microscopy and mechanically controllable break junctions at low temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, the use of RGB-D sensors have focused a lot of research in computer vision and robotics. These kinds of sensors, like Kinect, allow to obtain 3D data together with color information. However, their working range is limited to less than 10 meters, making them useless in some robotics applications, like outdoor mapping. In these environments, 3D lasers, working in ranges of 20-80 meters, are better. But 3D lasers do not usually provide color information. A simple 2D camera can be used to provide color information to the point cloud, but a calibration process between camera and laser must be done. In this paper we present a portable calibration system to calibrate any traditional camera with a 3D laser in order to assign color information to the 3D points obtained. Thus, we can use laser precision and simultaneously make use of color information. Unlike other techniques that make use of a three-dimensional body of known dimensions in the calibration process, this system is highly portable because it makes use of small catadioptrics that can be placed in a simple manner in the environment. We use our calibration system in a 3D mapping system, including Simultaneous Location and Mapping (SLAM), in order to get a 3D colored map which can be used in different tasks. We show that an additional problem arises: 2D cameras information is different when lighting conditions change. So when we merge 3D point clouds from two different views, several points in a given neighborhood could have different color information. A new method for color fusion is presented, obtaining correct colored maps. The system will be tested by applying it to 3D reconstruction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paper submitted to the 43rd International Symposium on Robotics (ISR2012), Taipei, Taiwan, Aug. 29-31, 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate characterization of the microporous structure in porous solids is of paramount importance for several applications such as energy and gas storage, nanoconfinement reactions, and so on. Among the different techniques for precise textural characterization, high-precision gas adsorption measurement of probe molecules at cryogenic temperatures (e.g., N2 at 77.4 K and Ar at 87.3 K) is the most widely used, after appropriate calibration of the sample holder with a probe gas, which does not experience physisorption processes. Although traditionally helium has been considered not to be adsorbed in porous solids at cryogenic temperatures, here we show that even at 77.4 K (high above its boiling temperature, 4 K) the use of He in the calibration step can give rise to erroneous interpretations when narrow micropores/constrictions are present.