4 resultados para ARYLATION
em Universidad de Alicante
Resumo:
Palladium impregnated on magnetite is an efficient, cheap and easy to prepare catalyst for the direct arylation of heterocycles. Good yields are afforded under relatively mild conditions and a broad substrate scope is evident. The catalyst is regioselective in many cases, affording arylated products, at the C2- or C3-position (depending of the heterocycle used). The methodology can be extended to prepare chromenes through an intramolecular direct arylation reaction. Some evidence is provided for two catalyst deactivation pathways, which prevents efficient recycling.
Resumo:
Heck-arylation/cyclization was achieved using heterogeneous palladium(II) oxide impregnated on magnetite catalyst (2.5 mol%) with a lower catalyst loading than that reported for similar processes. Ethanol was used as a non-toxic and bio-renewable solvent. Good yields were afforded using a broad range of substrates (40–98%). The catalyst could be partially recycled, and analyses confirmed the almost total reduction of palladium(II) oxide to palladium(0) as well as the iodine poissoning effect, which is the main barrier to complete recyclability.
Resumo:
5-Carbapterocarpens, one of them displaying estrogenic activity, were prepared from α-aryltetralones in high yields through a one-pot, BBr3-promoted O-demethylation and cyclization sequence. The key α-aryltetralone intermediates were obtained by direct α-arylation of tetralones with o-alkoxybromoarenes in the presence of Pd2(dba)3 (2.5 mol-%) and tBu3PHBF4 (10 mol-%) as catalysts, together with 2.5 equiv. of KOH in dioxane/H2O (4:1), under microwave irradiation conditions (80 W, 100 °C, 40 min), leading to α-monoaryltetralones in good yields.
Resumo:
Aryl imidazole-1-sulfonates are efficiently cross-coupled with arylboronic acids and potassium aryltrifluoroborates using only 0.5 mol % of oxime palladacycles 1 under aqueous conditions at 110 °C. Under these simple phosphane-free reaction conditions a wide array of biaryl derivatives has been prepared in high yields. This methodology allows in situ phenol sulfonation and one-pot Suzuki arylation as well as the employment of microwave irradiation conditions.