5 resultados para ANGLE-RESOLVED PHOTOEMISSION
em Universidad de Alicante
Resumo:
Purpose: To compare anterior and posterior corneal curvatures between eyes with primary open-angle glaucoma (POAG) and healthy eyes. Methods: This is a prospective, cross-sectional, observer-masked study. A total of 138 white subjects (one eye per patient) were consecutively recruited; 69 eyes had POAG (study group), and the other 69 comprised a group of healthy control eyes matched for age and central corneal pachymetry with the study ones. Exclusion criteria included any corneal or ocular inflammatory disease, previous ocular surgery, or treatment with carbonic anhydrase inhibitors. The same masked observer performed Goldmann applanation tonometry, ultrasound pachymetry, and Orbscan II topography in all cases. Central corneal thickness, intraocular pressure, and anterior and posterior topographic elevation maps were analyzed and compared between both groups. Results: Patients with POAG had greater forward shifting of the posterior corneal surface than that in healthy control eyes (p < 0.01). Significant differences in anterior corneal elevation between controls and POAG eyes were also found (p < 0.01). Conclusions: Primary open-angle glaucoma eyes have a higher elevation of the posterior corneal surface than that in central corneal thickness–matched nonglaucomatous eyes.
Resumo:
Context. 4U 1538−52, an absorbed high mass X-ray binary with an orbital period of ~3.73 days, shows moderate orbital intensity modulations with a low level of counts during the eclipse. Several models have been proposed to explain the accretion at different orbital phases by a spherically symmetric stellar wind from the companion. Aims. The aim of this work is to study both the light curve and orbital phase spectroscopy of this source in the long term. In particular, we study the folded light curve and the changes in the spectral parameters with orbital phase to analyse the stellar wind of QV Nor, the mass donor of this binary system. Methods. We used all the observations made from the Gas Slit Camera on board MAXI of 4U 1538−52 covering many orbits continuously. We obtained the good interval times for all orbital phase ranges, which were the input for extracting our data. We estimated the orbital period of the system and then folded the light curves, and we fitted the X-ray spectra with the same model for every orbital phase spectrum. We also extracted the averaged spectrum of all the MAXI data available. Results. The MAXI spectra in the 2–20 keV energy range were fitted with an absorbed Comptonisation of cool photons on hot electrons. We found a strong orbital dependence of the absorption column density but neither the fluorescence iron emission line nor low energy excess were needed to fit the MAXI spectra. The variation in the spectral parameters over the binary orbit were used to examine the mode of accretion onto the neutron star in 4U 1538−52. We deduce a best value of Ṁ/v∞ = 0.65 × 10-9M⊙ yr-1/ (km s-1) for QV Nor.
Resumo:
The coherent nature of the acquisition by TerraSAR-X of both copolar channels (HH and VV) enables the generation of many different polarimetric observables with physical interpretation, as have recently been used for monitoring rice fields. In this letter, the influence of incidence angle upon these polarimetric observables is analyzed by comparing three stacks of images that were acquired simultaneously at different incidence angles (22°, 30°, and 40°) during a whole cultivation campaign. We show that the response of observables related to dominance (entropy, ratios of components) and type of scattering mechanisms (alpha angles) is not greatly influenced by incidence angle at some stages: early and advanced vegetative phases, and maturation. Moreover, the acquisition geometry drives the sensitivity to the presence of the initial stems and tillers, being detected earlier at shallower angles. This analysis is a necessary step before studying potential methodologies for combining different orbits and beams for reducing the time between acquisitions for monitoring purposes.
Resumo:
We study the timing and spectral properties of the low-magnetic field, transient magnetar SWIFT J1822.3−1606 as it approached quiescence. We coherently phase-connect the observations over a time-span of ∼500 d since the discovery of SWIFT J1822.3−1606 following the Swift-Burst Alert Telescope (BAT) trigger on 2011 July 14, and carried out a detailed pulse phase spectroscopy along the outburst decay. We follow the spectral evolution of different pulse phase intervals and find a phase and energy-variable spectral feature, which we interpret as proton cyclotron resonant scattering of soft photon from currents circulating in a strong (≳1014 G) small-scale component of the magnetic field near the neutron star surface, superimposed to the much weaker (∼3 × 1013 G) magnetic field. We discuss also the implications of the pulse-resolved spectral analysis for the emission regions on the surface of the cooling magnetar.
Resumo:
We show that a wide-angle converging wave may be transformed into a shape-preserving accelerating beam having a beam-width near the diffraction limit. For that purpose, we followed a strategy that is particularly conceived for the acceleration of nonparaxial laser beams, in contrast to the well-known method by Siviloglou et al (2007 Phys. Rev. Lett. 99 213901). The concept of optical near-field shaping is applied to the design of non-flat ultra-narrow diffractive optical elements. The engineered curvilinear caustic can be set up by the beam emerging from a dynamic assembly of elementary gratings, the latter enabling to modify the effective refractive index of the metamaterial as it is arranged in controlled orientations. This light shaping process, besides being of theoretical interest, is expected to open up a wide range of broadband application possibilities.