11 resultados para ALUMINA MONOLITHIC XEROGELS
em Universidad de Alicante
Resumo:
Low metal content Co and Ni alumina supported catalysts (4.0, 2.5 and 1.0 wt% nominal metal content) have been prepared, characterized (by ICP-OES, TEM, TPR-H2 and TPO) and tested for the CO2 reforming of methane. The objective is to optimize the metal loading in order to have a more efficient system. The selected reaction temperature is 973 K, although some tests at higher reaction temperature have been also performed. The results show that the amount of deposited carbon is noticeably lower than that obtained with the Co and Ni reference catalysts (9 wt%), but the CH4 and CO2 conversions are also lower. Among the catalysts tested, the Co(1) catalyst (the value in brackets corresponds to the nominal wt% loading) is deactivated during the first minutes of reaction because CoAl2O4 is formed, while Ni(1) and Co(2.5) catalysts show a high specific activity for methane conversion, a high stability and a very low carbon deposition.
Resumo:
A range of catalysts based on Pd nanoparticles supported on inorganic supports such as BETA and ZSM-5 zeolites, a silicoaluminophosphate molecular sieve (SAPO-5) and γ-alumina as a standard support have been tested for the total oxidation of naphthalene (100 ppm, total flow 50 ml/min) showing a conversion to carbon dioxide of 100% between 165 and 180 °C for all the analysed catalysts. From the combined use of zeolites with PVP polymer protected Pd based nanoparticles, enhanced properties have been found for the total abatement of naphthalene in contrast with other kinds of catalysts. A Pd/BETA catalyst has been demonstrated to have excellent activity, with a high degree of stability, as shown by time on line experiments maintaining 100% conversion to CO2 during the 48 h tested.
Resumo:
The immobilization of the chiral complex RhDuphos, by electrostatic or π–π (adsorption) interactions, on carbon nanotubes and carbon xerogels is investigated. To promote such interactions, the supports were either oxidized or heat treated to create carboxylic type surface groups or an apolar surface, respectively. The catalysts were tested in the hydrogenation of methyl 2-acetamidoacrylate. The prepared hybrid catalysts are less active than the homogeneous RhDuphos, but most of them show a high enantioselectivity and the one prepared with the oxidized carbon xerogel is also reusable, being able to give a high substrate conversion, keeping as well a high enantioselectivity. The anchorage by electrostatic interactions is more interesting than the anchorage by π–π interactions, as the π–π adsorption method produces a modification of the metal complex structure leading to an active hybrid catalyst but without enantioselectivity. The creation of carboxylic groups on the support surface has led to some hindering of the complex leaching.
Resumo:
With global warming becoming one of the main problems our society is facing nowadays, there is an urgent demand to develop materials suitable for CO2 storage as well as for gas separation. Within this context, hierarchical porous structures are of great interest for in-flow applications because of the desirable combination of an extensive internal reactive surface along narrow nanopores with facile molecular transport through broad “highways” leading to and from these pores. Deep eutectic solvents (DESs) have been recently used in the synthesis of carbon monoliths exhibiting a bicontinuous porous structure composed of continuous macroporous channels and a continuous carbon network that contains a certain microporosity and provides considerable surface area. In this work, we have prepared two DESs for the preparation of two hierarchical carbon monoliths with different compositions (e.g., either nitrogen-doped or not) and structure. It is worth noting that DESs played a capital role in the synthesis of hierarchical carbon monoliths not only promoting the spinodal decomposition that governs the formation of the bicontinuous porous structure but also providing the precursors required to tailor the composition and the molecular sieve structure of the resulting carbons. We have studied the performance of these two carbons for CO2, N2, and CH4 adsorption in both monolithic and powdered form. We have also studied the selective adsorption of CO2 versus CH4 in equilibrium and dynamic conditions. We found that these materials combined a high CO2-sorption capacity besides an excellent CO2/N2 and CO2/CH4 selectivity and, interestingly, this performance was preserved when processed in both monolithic and powdered form.
Resumo:
Resorcinol-Formaldehyde xerogels are organic polymers that can be easily tailored to have specific properties. These materials are composed of carbon, hydrogen and oxygen, and have a surface that is very rich in oxygen functionalities, and is therefore very hydrophilic. Their most interesting feature is that they may have the same chemical composition but a different porous texture. Consequently, the influence of porous characteristics, such as pore volume, surface area or pore size can be easily assessed. In this work, a commonly used desiccant, silica gel, is compared with organic xerogels to determine their rate and capacity of water adsorption, and to evaluate the role of surface chemistry versus porous texture. It was found that organic xerogels showed a higher rate of moisture adsorption than silica gel. Pore structure also seems to play an important role in water adsorption capacity. The OX-10 sample, whose porosity was mainly composed of micro-mesoporosity displayed a water adsorption capacity two times greater than that of the silica gel, and three times higher than that of the totally macroporous xerogel OX-2100. The presence of feeder pores (mesopores) that facilitate the access to the hydrophilic surface was observed to be the key factor for a good desiccant behaviour. Neither the total pore volume nor the high surface area (i.e. high microporosity) of the desiccant sample, is as important as the mesopore structure.
Resumo:
This study describes the electrochemical characterization of N-doped carbon xerogels in the form of microspheres and of carbon aerogels with varied porosities and surface oxygen complexes. The interfacial capacitance of N-doped carbon xerogels decreased with increased micropore surface area as determined by N2 adsorption at −196 °C. The interfacial capacitance showed a good correlation with the areal NXPS concentration, and the best correlation with the areal concentration of pyrrolic or pyridonic nitrogen functionalities. The gravimetric capacitance decreased with greater xerogel microsphere diameter. The interfacial capacitance of carbon aerogels increased with higher percentage of porosity as determined from particle and true densities. The interfacial capacitance showed a linear relationship with the areal oxygen concentration and with the areal concentrations of CO- and CO2-evolving groups.
Resumo:
The magnetization reversal of two-dimensional arrays of parallel ferromagnetic Fe nanowires embedded in nanoporous alumina templates has been studied. By combining bulk magnetization measurements (superconducting quantum interference device magnetometry) with field-dependent magnetic force microscopy (MFM), we have been able to decompose the macroscopic hysteresis loop in terms of the irreversible magnetic responses of individual nanowires. The latter are found to behave as monodomain ferromagnetic needles, with hysteresis loops displaced (asymmetric) as a consequence of the strong dipolar interactions between them. The application of field-dependent MFM provides a microscopic method to obtain the hysteresis curve of the array, by simply registering the fraction of up and down magnetized wires as a function of applied field. The observed deviations from the rectangular shape of the macroscopic hysteresis loop of the array can be ascribed to the spatial variation of the dipolar field through the inhomogeneously filled membrane. The system studied proves to be an excellent example of the two-dimensional classical Preisach model, well known from the field of hysteresis modeling and micromagnetism.
Resumo:
La principal aportación del trabajo es la formulación de una alternativa que facilita la determinación experimental del factor de pérdidas y, en consecuencia, mejorar las predicciones de aislamiento a ruido aéreo para vidrios con una o más capas intermedias sea cual fuere su naturaleza. Además, se realiza una revisión de las normativas relacionadas con los ensayos de los parámetros mecánicos necesarios para la caracterizar los vidrios, centrándonos en los monolíticos y los laminados. En efecto, uno de los problemas que se plantea en el contexto de la acústica de la edificación actualmente es el de cumplir con los requisitos de aislamiento acústico a ruido aéreo en fachada que exige el vigente Código Técnico de la Edificación (CTE). Como sabemos, en la fachada podemos distinguir la parte ciega y la parte hueca. La parte más débil en lo concerniente a aislamiento a ruido aéreo es la hueca (compuesta por el vidrio, carpintería y otros elementos). Si la carpintería es la adecuada, la superficie de vidrio se convierte en el elemento limitante. El Catálogo de Elementos Constructivos (CEC) del CTE, la propia norma UNE-EN 12758:2011, así como algunos, cada vez más, fabricantes ofrecen datos del aislamiento de vidrios simples, vidrios laminados y vidrios dobles. En el caso de vidrios laminados, estos datos se limitan únicamente en los que tienen un sola lámina intermedia y, además, no acústicos. Podemos hablar, por tanto, de una laguna de información en este sentido. Para obtener predicciones fiables de aislamiento acústico a ruido aéreo de particiones multicapa, como pueden ser los vidrios laminados es necesario disponer de las características mecánicas y una de las más relevantes es el factor de pérdidas.
Resumo:
CuO/ceria-zirconia catalysts have been prepared, deeply characterised (N2 adsorption–desorption isotherms at −196 °C, XRD, Raman spectroscopy, XPS, TEM and H2-TPR) and tested for NO oxidation to NO2 in TPR conditions, and for soot combustion at mild temperature (400 °C) in a NOx/O2 stream. The behaviour has been compared to that of a reference Pt/alumina commercial catalyst. The ceria-zirconia support was prepared by the co-precipitation method, and different amounts of copper (0.5, 1, 2, 4 and 6 wt%) were loaded by incipient wetness impregnation. The results revealed that copper is well-dispersed onto the ceria-zirconia support for the catalysts with low copper loading and CuO particles were only identified by XRD in samples with 4 and 6% of copper. A very low loading of copper increases significantly the activity for the NO oxidation to NO2 with regard to the ceria-zirconia support and an optimum was found for a 4% CuO/ceria-zirconia composition, showing a very high activity (54% at 348 °C). The soot combustion rate at 400 °C obtained with the 2% CuO/ceria-zirconia catalyst is slightly lower to that of 1% Pt/alumina in terms of mass of catalyst but higher in terms of price of catalyst.
Resumo:
Nanostructured TiO2 photocatalysts with small crystalline sizes have been synthesized by sol-gel using the amphiphilic triblock copolymer Pluronic P123 as template. A new synthesis route, based on the treatment of TiO2 xerogels with acid-ethanol mixtures in two different steps, synthesis and extraction-crystallization, has been investigated, analyzing two acids, hydrochloric and hydriodic acid. As reference, samples have also been prepared by extraction-crystallization in ethanol, being these TiO2 materials amorphous and presenting higher porosities. The prepared materials present different degrees of crystallinity depending on the experimental conditions used. In general, these materials exhibit high surface areas, with an important contribution of microporosity and mesoporosity, and with very small size anatase crystals, ranging from 5 to 7 nm. The activity of the obtained photocatalysts has been assessed in the oxidation of propene in gas phase at low concentration (100 ppmv) under a UVA lamp with 365 nm wavelength. In the conditions studied, these photocatalysts show different activities in the oxidation of propene which do not depend on their surface areas, but on their crystallinity and band gap energies, being sample prepared with HCl both during synthesis and in extraction-crystallizations steps, the most active one, with superior performance than Evonik P25.
Resumo:
A study on the preparation of thin films of ZSM-5 and BETA zeolites, and a SAPO-5 silicoaluminophosphate, supported on cordierite honeycomb monoliths by in situ synthesis was carried out for their use as catalyst supports. Furthermore γ-Al2O3 was also coated onto a cordierite honeycomb monolith by a dip-coating method for use as a standard support. Structured monolithic catalysts were prepared by impregnation of the aforementioned coated monoliths with polymer-protected Pd nanoparticles. The monolithic catalysts have been tested for the total oxidation of naphthalene (100 ppm, GHSV 1220 h−1). From the combined use of the zeolite with polymer-protected nanoparticles, enhanced catalytic properties have been found for the total abatement of naphthalene. The Pd/MBETA and Pd/MZSM-5 catalytic monoliths have shown excellent activity with a high degree of stability, even after undergoing accelerated ageing experiments.