4 resultados para 309901 Fertilisers and Agrochemicals (Application etc.)
em Universidad de Alicante
Resumo:
Comunicación presentada en las IV Jornadas TIMM, Torres (Jaén), 7-8 abril 2011.
Resumo:
The synthesis of nano-sized ZIF-11 with an average size of 36 ± 6 nm is reported. This material has been named nano-zeolitic imidazolate framework-11 (nZIF-11). It has the same chemical composition and thermal stability and analogous H2 and CO2 adsorption properties to the conventional microcrystalline ZIF-11 (i.e. 1.9 ± 0.9 μm). nZIF-11 has been obtained following the centrifugation route, typically used for solid separation, as a fast new technique (pioneering for MOFs) for obtaining nanomaterials where the temperature, time and rotation speed can easily be controlled. Compared to the traditional synthesis consisting of stirring + separation, the reaction time was lowered from several hours to a few minutes when using this centrifugation synthesis technique. Employing the same reaction time (2, 5 or 10 min), micro-sized ZIF-11 was obtained using the traditional synthesis while nano-scale ZIF-11 was achieved only by using centrifugation synthesis. The small particle size obtained for nZIF-11 allowed the use of the wet MOF sample as a colloidal suspension stable in chloroform. This helped to prepare mixed matrix membranes (MMMs) by direct addition of the membrane polymer (polyimide Matrimid®) to the colloidal suspension, avoiding particle agglomeration resulting from drying. The MMMs were tested for H2/CO2 separation, improving the pure polymer membrane performance, with permeation values of 95.9 Barrer of H2 and a H2/CO2 separation selectivity of 4.4 at 35 °C. When measured at 200 °C, these values increased to 535 Barrer and 9.1.
Resumo:
This study evaluates the application of denim fiber scraps as a precursor for the synthesis of adsorbents for water treatment via pyrolysis and their application in water defluoridation. The best pyrolysis conditions for the synthesis of this novel adsorbent have been identified and a metal doping route with different salts of Al3 +, La3 + and Fe3 + was proposed to improve its fluoride adsorption behavior. Different spectroscopic and microscopic techniques (i.e., FTIR, XPS, XRF, SEM) were used to characterize the precursor and adsorbents, and to analyze the surface interactions involved in the fluoride removal mechanism. Experimental results showed that these adsorbents were effective for fluoride adsorption showing uptakes up to 4.25 mg/g. The Si-O–metal–F interactions appear to be highly relevant for the fluoride removal. This study highlights the potential of denim textile waste as a raw material for the production of added-value products, thus minimizing their associated disposal cost. It also shows the performance of denim textile waste as a precursor of adsorbents for addressing relevant environmental concerns such as fluoride pollution.
Resumo:
This study describes a new synthesis route for bone chars using a CO2 atmosphere and their behavior as adsorbent for fluoride removal from water. Specifically, we have performed a detailed analysis of the adsorption properties of bone char samples obtained at different carbonization conditions and a comparative study with samples of bone char obtained via pyrolysis under nitrogen. Experimental results show that the nature of the gas atmosphere (CO2 versus N2) and the carbonization temperature play a major role to achieve an effective bone char for water defluoridation. In particular, the best adsorption properties of bone char for fluoride removal are obtained with those samples synthesized at 700 °C. Carbonization temperatures above 700 °C under CO2 atmosphere cause the dehydroxylation of the hydroxyapatite in the bone char, thus reducing its fluoride adsorption capacity. The maximum fluoride adsorption capacity for the bone char obtained in this study under CO2 atmosphere (i.e., 5.92 mg/g) is higher than those reported for commercial bone chars.