3 resultados para 24 hour measurement
em Universidad de Alicante
Resumo:
This randomized and controlled trial investigated whether the increase in elite training at different altitudes altered the oxidative stress biomarkers of the nervous system. This is the first study to investigate four F4-neuroprostanes and four F2-dihomo-isoprostanes quantified in 24-hour urine. The quantification was carried out by Ultra High Pressure Liquid Chromatography-triple Quadrupole-Tandem Mass Spectrometry (UHPLC-QqQ-MS/MS). Sixteen elite triathletes agreed to participate in the project. They were randomized in two groups, a group submitted to Altitude Training (n=8) and a group submitted to Sea Level Training (n=8), with a Control group of non-athletes (n=8). After experimental period, the Altitude Training group triathletes gave significant data: 17-epi-17-F2t-dihomo-IsoP (from 5.2 ± 1.4 µg/mL 24 h-1 to 6.6 ± 0.6 µg/mL 24 h-1), ent-7(RS)-7-F2t-dihomo-IsoP (from 6.6 ± 1.7 µg/mL 24 h-1 to 8.6 ± 0.9 µg /mL 24 h-1), and ent-7-epi-7-F2t-dihomo-IsoP (from 8.4 ± 2.2 µg/mL 24 h-1 to 11.3 ± 1.8 µg/mL 24 h-1) increased, while, of the neuronal degeneration-related compounds, only 10-epi-10-F4t-NeuroP (8.4 ± 1.7 µg/mL 24 h-1) and 10-F4t-NeuroP (5.2 ± 2.9 µg/mL 24 h-1) were detected in this group. For the control group and sea level training groups, no significant changes had occurred at the end of the 2-weeks experimental period. Therefore, and as the main conclusion, the training at moderate altitude increased the F4-NeuroPs- and F2-dihomo-isoPs-related oxidative damage of the central nervous system (CNS) compared to similar training at sea level.
Resumo:
In this paper, we demonstrate the use of a video camera for measuring the frequency of small-amplitude vibration movements. The method is based on image acquisition and multilevel thresholding and it only requires a video camera with high enough acquisition rate, not being necessary the use of targets or auxiliary laser beams. Our proposal is accurate and robust. We demonstrate the technique with a pocket camera recording low-resolution videos with AVI-JPEG compression and measuring different objects that vibrate in parallel or perpendicular direction to the optical sensor. Despite the low resolution and the noise, we are able to measure the main vibration modes of a tuning fork, a loudspeaker and a bridge. Results are successfully compared with design parameters and measurements with alternative devices.
Resumo:
Analysis of vibrations and displacements is a hot topic in structural engineering. Although there is a wide variety of methods for vibration analysis, direct measurement of displacements in the mid and high frequency range is not well solved and accurate devices tend to be very expensive. Low-cost systems can be achieved by applying adequate image processing algorithms. In this paper, we propose the use of a commercial pocket digital camera, which is able to register more than 420 frames per second (fps) at low resolution, for accurate measuring of small vibrations and displacements. The method is based on tracking elliptical targets with sub-pixel accuracy. Our proposal is demonstrated at a 10 m distance with a spatial resolution of 0.15 mm. A practical application over a simple structure is given, and the main parameters of an attenuated movement of a steel column after an impulsive impact are determined with a spatial accuracy of 4 µm.