4 resultados para 080302 Computer System Architecture
em Universidad de Alicante
Resumo:
This paper presents a multi-layered Question Answering (Q.A.) architecture suitable for enhancing current Q.A. capabilities with the possibility of processing complex questions. That is, questions whose answer needs to be gathered from pieces of factual information scattered in different documents. Specifically, we have designed a layer oriented to process the different types of temporal questions. Complex temporal questions are first decomposed into simpler ones, according to the temporal relationships expressed in the original question. In the same way, the answers of each simple question are re-composed, fulfilling the temporal restrictions of the original complex question. Using this architecture, a Temporal Q.A. system has been developed. In this paper, we focus on explaining the first part of the process: the decomposition of the complex questions. Furthermore, it has been evaluated with the TERQAS question corpus of 112 temporal questions. For the task of question splitting our system has performed, in terms of precision and recall, 85% and 71%, respectively.
Resumo:
In this paper, a proposal of a multi-modal dialogue system oriented to multilingual question-answering is presented. This system includes the following ways of access: voice, text, avatar, gestures and signs language. The proposal is oriented to the question-answering task as a user interaction mechanism. The proposal here presented is in the first stages of its development phase and the architecture is presented for the first time on the base of the experiences in question-answering and dialogues previously developed. The main objective of this research work is the development of a solid platform that will permit the modular integration of the proposed architecture.
Resumo:
This work describes a neural network based architecture that represents and estimates object motion in videos. This architecture addresses multiple computer vision tasks such as image segmentation, object representation or characterization, motion analysis and tracking. The use of a neural network architecture allows for the simultaneous estimation of global and local motion and the representation of deformable objects. This architecture also avoids the problem of finding corresponding features while tracking moving objects. Due to the parallel nature of neural networks, the architecture has been implemented on GPUs that allows the system to meet a set of requirements such as: time constraints management, robustness, high processing speed and re-configurability. Experiments are presented that demonstrate the validity of our architecture to solve problems of mobile agents tracking and motion analysis.
Resumo:
The explosive growth of the traffic in computer systems has made it clear that traditional control techniques are not adequate to provide the system users fast access to network resources and prevent unfair uses. In this paper, we present a reconfigurable digital hardware implementation of a specific neural model for intrusion detection. It uses a specific vector of characterization of the network packages (intrusion vector) which is starting from information obtained during the access intent. This vector will be treated by the system. Our approach is adaptative and to detecting these intrusions by using a complex artificial intelligence method known as multilayer perceptron. The implementation have been developed and tested into a reconfigurable hardware (FPGA) for embedded systems. Finally, the Intrusion detection system was tested in a real-world simulation to gauge its effectiveness and real-time response.