6 resultados para (Eye length) IOL measurements

em Universidad de Alicante


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: To evaluate in keratoconus eyes the intrasubject repeatability of anterior and posterior corneal curvature and of other anterior segment anatomic measurements obtained with a new topography system combining Scheimpflug-photography and Placido-disk technology. Setting: Vissum Corporation, Alicante, Spain. Design: Evaluation of technology. Methods: All keratoconus eyes had a comprehensive ophthalmologic examination including analysis with the Sirius system. Three consecutive measurements were obtained to assess the intrasubject repeatability of the following parameters: anterior and posterior corneal curvature and shape factor, white-to-white (WTW) corneal diameter, central and minimum corneal thickness, and anterior chamber depth (ACD). The within-subject standard deviation (Sw) and intraclass correlation coefficient (ICC) were calculated. Results: This study comprised 61 eyes of 61 patients ranging in age from 14 to 64 years. For anterior and posterior corneal curvatures and power vector components, the Sw was 0.29 mm or less in all cases. The ICC was above 0.990 in all cases except the flattest curvature of the posterior corneal surface at 3.0 mm, which was 0.840 (moderate agreement), and the posterior power vector J0, which was 0.665 (poor agreement), 0.752, and 0.758 (moderate agreement) for 3.0 mm, 5.0 mm, and 7.0 mm, respectively. In shape factor measurements, the Sw was 0.12 or less in all cases and the ICC ranged between 0.989 and 0.999. Pachymetry, ACD, and WTW had ICC values very close to 1. Conclusion: The new topography system provided repeatable measurements of corneal shape and other anatomic parameters in eyes with keratoconus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using a scanning tunnelling microscope or mechanically controllable break junction it has been shown that it is possible to control the formation of a wire made of single gold atoms. In these experiments an interatomic distance between atoms in the chain of ∼3.6 Å was reported which is not consistent with recent theoretical calculations. Here, using precise calibration procedures for both techniques, we measure the length of the atomic chains. Based on the distance between the peaks observed in the chain length histogram we find the mean value of the interatomic distance before chain rupture to be 2.5±0.2 Å. This value agrees with the theoretical calculations for the bond length. The discrepancy with the previous experimental measurements was due to the presence of He gas, that was used to promote the thermal contact, and which affects the value of the work function that is commonly used to calibrate distances in scanning tunnelling microscopy and mechanically controllable break junctions at low temperatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To evaluate choroidal thickness in young subjects using Enhanced Depth Imaging Spectral Domain Optical Coherence Tomography (EDI SD-OCT) describing volume differences between all the defined areas of the Early Treatment Diabetic Retinopathy Study (ETDRS). Design: Prospective, clinical study. Methods: Seventy-nine eyes of 95 healthy, young (23.8±3.2years), adult volunteers were prospectively enrolled. Manual choroidal segmentation on a 25-raster horizontal scan protocol was performed. The measurements of the nine subfields defined by the ETDRS were evaluated. Results: Mean subfoveal choroidal thickness was 345.67±81.80μm and mean total choroidal volume was 8.99±1.88mm3. Choroidal thickness and volume were higher at the superior and temporal areas compared to inferior and nasal sectors of the same diameter respectively. Strong correlations between subfoveal choroidal thickness and axial length (AL) and myopic refractive error were obtained, r = -0.649, p<0.001 and r = 0.473, p<0.001 respectively. Emmetropic eyes tended to have thicker subfoveal choroidal thickness (381.94±79.88μm versus 307.04±64.91μm) and higher total choroidal volume than myopic eyes (9.80± 1.87mm3 versus 8.14±1.48mm3). The estimation of the variation of the subfoveal choroidal thickness with the AL was-43.84μm/mm. In the myopic group, the variation of the subfoveal choroidal thickness with the myopic refractive error was -10.45μm/D. Conclusions: This study establishes for the first time a normal database for choroidal thickness and volume in young adults. Axial length, and myopic ammetropy are highly associated with choroidal parameters in healthy subjects. EDI SD-OCT exhibited a high degree of intraobserver and interobserver repeatability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose. To evaluate theoretically in normal eyes the influence on IOL power (PIOL) calculation of the use of a keratometric index (nk) and to analyze and validate preliminarily the use of an adjusted keratometric index (nkadj) in the IOL power calculation (PIOLadj). Methods. A model of variable keratometric index (nkadj) for corneal power calculation (Pc) was used for IOL power calculation (named PIOLadj). Theoretical differences ($PIOL) between the new proposed formula (PIOLadj) and which is obtained through Gaussian optics (PIOL Gauss) were determined using Gullstrand and Le Grand eye models. The proposed new formula for IOL power calculation (PIOLadj) was prevalidated clinically in 81 eyes of 81 candidates for corneal refractive surgery and compared with Haigis, HofferQ, Holladay, and SRK/T formulas. Results. A theoretical PIOL underestimation greater than 0.5 diopters was present in most of the cases when nk = 1.3375 was used. If nkadj was used for Pc calculation, a maximal calculated error in $PIOL of T0.5 diopters at corneal vertex in most cases was observed independently from the eye model, r1c, and the desired postoperative refraction. The use of nkadj in IOL power calculation (PIOLadj) could be valid with effective lens position optimization nondependent of the corneal power. Conclusions. The use of a single value of nk for Pc calculation can lead to significant errors in PIOL calculation that may explain some IOL power overestimations with conventional formulas. These inaccuracies can be minimized by using the new PIOLadj based on the algorithm of nkadj.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Póster presentado en el VII European/ I World Meeting in Visual and Physiological Optics

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optical power of a thick spherical lens and its Coddington shape factor are essential magnitudes that characterize its image quality. Here, we propose an experimental procedure and apparatus that allow accurate determination of those magnitudes for any spherical lens from geometrical measurements. The performance of the technique and the used instruments are simple since it only requires a microscope and an optical mouse. The propose overcomes the drawbacks of other devices that need of the refractive index or may damage the lens surfaces, like spherometers, and provides similar results to those from commercial lensmeters.