136 resultados para Oxidação electroquímica


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oxidation of ethanol (EtOH) at Pt(111) electrodes is dominated by the 4e path leading to acetic acid. The inclusion of surface defects such as those present on stepped surfaces leads to an increase of the reactivity towards the most desirable 12e path leading to CO2 as final product. This path is also favored when the methyl group is more oxidized, as in the case of ethylene glycol (EG) that spontaneously decomposes to CO on Pt(111) electrodes, thus showing a more effective breaking of the C-C bond. Some trends in reactivity can be envisaged when other derivative molecules are compared at well-ordered electrodes. This strategy was used in the past, but the improvement in the electrode pretreatment and the overall information available on the subject suggest that relevant information is still missing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We address in this paper a voltammetric study of the charge transfer processes characteristic of Pt(1 0 0) and vicinal surfaces in alkaline media. The electrochemical behavior of a series of stepped surfaces of the type Pt(S)[n(1 0 0) × (1 1 1)] has been characterized using cyclic voltammetry at different pHs, charge displacement measurements and FTIR experiments for adsorbed CO. The results from these techniques allow assigning the different peaks appearing in the voltammogram to hydrogen and/or OH adsorption on the different sites of these surfaces, namely, terrace and step sites. Additionally, the potential of zero total charge (pztc) of the electrodes was determined. The resulting pztc values shift to more negative values when the step density increases on the surface up to n = 5. FTIR spectroscopy experiments have been used to monitor the adsorption of CO on the different surfaces as well as the consequent CO oxidation, accompanying a positive potential sweep. The oxidation of adsorbed CO on (1 0 0) terraces is catalyzed by the presence of the (1 1 1) steps. The FTIR spectra revealed that CO is mostly bonded in bridge configuration at low potentials interconverting to on-top when the electrode potential is increased.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En la actualidad, los arrecifes de coral, ecosistemas productivos de gran vulnerabilidad, se encuentran en un estado de degradación continua por factores tanto de carácter antropogénico como natural. Consecuentemente se han desarrollado diversas metodologías de conservación y restauración de las cuales destaca el uso de técnicas electroquímicas. Dicha técnica consiste en el depósito electroasistido de carbonatos de calcio sobre soportes de acero inoxidable (u otro material conductor) que sumergido en el agua de mar y por la aplicación de una corriente de reducción genera un depósito mineral sobre el soporte metálico. En primer lugar, se han estudiado diversos sustratos conductores, tanto metálicos como carbonosos mediante técnicas voltamperométricas en las que se ha podido apreciar la efectividad de cada uno de ellos para la precipitación de minerales. Si se aplica una intensidad de corriente en la electrolisis de agua de mar se produce una reacción de reducción electroquímica en el electrodo sumergido que actúa como cátodo que induce un cambio de los parámetros químicos del agua: el pH, alcalinidad, concentración de calcio y magnesio, etc. A la vez, en la superficie del cátodo se promueve la formación y crecimiento de un depósito mineral. Este se ha analizado mediante diversas técnicas de microscopía, microanálisis y difracción de rayos X y los resultados muestran como la aplicación de distintas densidades de corriente durante las electrólisis tienen la capacidad de modular, las características morfológicas, atómicas y cristalográficas de los depósitos. La composición mineralógica del compuesto agregado en el electrodo consta de Mg(OH)2 y CaCO3. Las estructuras cristalinas de tales especies corresponden a la forma brucita, con una textura lisa e homogénea y aragonito con hábito botroidal. Densidades de corriente aplicadas por encima de 1 mA/cm2 generan depósitos con más de un 93% de presencia de brucita además de presentar una cristalografía más amorfa y un progresivo descenso de la eficiencia del proceso con un elevado gasto energético. En cambio, se ha comprobado que es posible modular las características del depósito a obtener con densidades de corriente comprendidas entre 0.01 y 1 mA/cm2, obteniendo una composición del depósito con cantidades de aragonito, textura y morfología óptimas para una futura aplicación con corales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using a combination of experimental and computational methods, mainly FTIR and DFT calculations, new insights are provided here in order to better understand the cleavage of the C–C bond taking place during the complete oxidation of ethanol on platinum stepped surfaces. First, new experimental results pointing out that platinum stepped surfaces having (111) terraces promote the C–C bond breaking are presented. Second, it is computationally shown that the special adsorption properties of the atoms in the step are able to promote the C–C scission, provided that no other adsorbed species are present on the step, which is in agreement with the experimental results. In comparison with the (111) terrace, the cleavage of the C–C bond on the step has a significantly lower activation energy, which would provide an explanation for the observed experimental results. Finally, reactivity differences under acidic and alkaline conditions are discussed using the new experimental and theoretical evidence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel polymer electrolyte membrane electrochemical reactor (PEMER) configuration has been employed for the direct electrooxidation of propargyl alcohol (PGA), a model primary alcohol, towards its carboxylic acid derivatives in alkaline medium. The PEMER configuration comprised of an anode and cathode based on nanoparticulate Ni and Pt electrocatalysts, respectively, supported on carbonaceous substrates. The electrooxidation of PGA was performed in 1.0 M NaOH, where a cathode based on a gas diffusion electrode was manufactured for the reduction of oxygen in alkaline conditions. The performance of a novel alkaline anion-exchange membrane based on Chitosan (CS) and Poly(vinyl) alcohol (PVA) in a 50:50 composition ratio doped with a 5 wt.% of poly (4-vinylpyridine) organic ionomer cross-linked, methyl chloride quaternary salt resin (4VP) was assessed as solid polymer electrolyte. The influence of 4VP anionic ionomer loading of 7, 12 and 20 wt.% incorporated into the electrocatalytic layers was examined by SEM and cyclic voltammetry (CV) upon the optimisation of the electroactive area, the mechanical stability and cohesion of the catalytic ink onto the carbonaceous substrate for both electrodes. The performance of the 4VP/CS:PVA membrane was compared with the commercial alkaline anion-exchange membrane FAA −a membrane generally used in direct alcohol alkaline fuel cells- in terms of polarisation plots in alkaline conditions. Furthermore, preparative electrolyses of the electrooxidation of PGA was performed under alkaline conditions of 1 M NaOH at constant current density of 20 mA cm−2 using a PEMER configuration to provide proof of the principle of the feasibility of the electrooxidation of other alcohols in alkaline media. PGA conversion to Z isomers of 3-(2-propynoxy)-2-propenoic acid (Z-PPA) was circa 0.77, with average current efficiency of 0.32. Alkaline stability of the membranes within the PEMER configuration was finally evaluated after the electrooxidation of PGA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inspired by recent reports concerning the utilisation of hand drawn pencil macroelectrodes (PDEs), we report the fabrication, characterisation (physicochemical and electrochemical) and implementation (electrochemical sensing) of various PDEs drawn upon a flexible polyester substrate. Electrochemical characterisation reveals that there are no quantifiable electrochemical responses upon utilising these PDEs with an electroactive analyte that requires an electrochemical oxidation step first, therefore the PDEs have been examined towards the electroactive redox probes hexaammineruthenium(III) chloride, potassium ferricyanide and ammonium iron(II) sulfate. For the first time, characterisation of the number of drawn pencil layers and the grade of pencil are examined; these parameters are commonly overlooked when utilising PDEs. It is demonstrated that a PDE drawn ten times with a 6B pencil presented the most advantageous electrochemical platform, in terms of electrochemical reversibility and peak height/analytical signal. In consideration of the aforementioned limitation, analytes requiring an electrochemical reduction as the first process were solely analysed. We demonstrate the beneficial electroanalytical capabilities of these PDEs towards p-benzoquinone and the simultaneous detection of heavy metals, namely lead(II) and cadmium(II), all of which are explored for the first time utilising PDEs. Initially, the detection limits of this system were higher than desired for electroanalytical platforms, however upon implementation of the PDEs in a back-to-back configuration (in which two PDEs are placed back-to-back sharing a single connection to the potentiostat), the detection limits for lead(II) and cadmium(II) correspond to 10 μg L−1 and 98 μg L−1 respectively within model aqueous (0.1 M HCl) solutions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currently, one of the most attractive and desirable ways to solve the energy challenge is harvesting energy directly from the sunlight through the so-called artificial photosynthesis. Among the ternary oxides based on earth–abundant metals, bismuth vanadate has recently emerged as a promising photoanode. Herein, BiVO4 thin film photoanodes have been successfully synthesized by a modified metal-organic precursor decomposition method, followed by an annealing treatment. In an attempt to improve the photocatalytic properties of this semiconductor material for photoelectrochemical water oxidation, the electrodes have been modified (i) by doping with La and Ce (by modifying the composition of the BiVO4 precursor solution with the desired concentration of the doping element), and (ii) by surface modification with Au nanoparticles potentiostatically electrodeposited. La and Ce doping at concentrations of 1 and 2 at% in the BiVO4 precursor solution, respectively, enhances significantly the photoelectrocatalytic performance of BiVO4 without introducing important changes in either the material structure or the electrode morphology, according to XRD and SEM characterization. In addition, surface modification of the electrodes with Au nanoparticles further enhances the photocurrent as such metallic nanoparticles act as co-catalysts, promoting charge transfer at the semiconductor/solution interface. The combination of these two complementary ways of modifying the electrodes has resulted in a significant increase in the photoresponse, facilitating their potential application in artificial photosynthesis devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La red de trabajo formada por los profesores coordinadores de semestre y de titulación del Grado en Geología (Facultad de Ciencias, Universidad de Alicante) ha tenido como objetivos principales: afianzar la implementación de las enseñanzas conforme al contenido del plan de estudios del título verificado; elaborar planes de mejora para solventar las posibles deficiencias detectadas y colaborar con los instrumentos del Sistema de Garantía Interno de Calidad (SGIC) del centro en la elaboración de los informes de autoevaluación del título. El método de trabajo se basa en reuniones en las que los miembros de la red plantearán y debatirán los parámetros e indicadores de seguimiento de la red, en la que cada investigador (coordinador) aporta una investigación individualizada del semestre del que es responsable. Ante la inminente acreditación del título el próximo curso, buena parte de las tareas se han enfocado a colaborar en los informes de auto-evaluación del título y en los planes de mejora.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of technologies for the recycling of carbon dioxide into carbon-containing fuels is one of the major challenges in sustainable energy research. Two of the main current limitations are the poor efficiency and fast deactivation of catalysts. Core–shell nanoparticles are promising candidates for enhancing challenging reactions. In this work, Au@Cu core–shell nanoparticles with well-defined surface structures were synthesized and evaluated as catalysts for the electrochemical reduction of carbon dioxide in neutral medium. The activation potential, the product distribution and the long term durability of this catalyst were assessed by electrochemical methods, on-line electrochemical mass spectrometry (OLEMS) and on-line high performance liquid chromatography. Our results show that the catalytic activity and the selectivity can be tweaked as a function of the thickness of Cu shells. We have observed that the Au cubic nanoparticles with 7–8 layers of copper present higher selectivity towards the formation of hydrogen and ethylene; on the other hand, we observed that Au cubic nanoparticles with more than 14 layers of Cu are more selective towards the formation of hydrogen and methane. A trend in the formation of the gaseous products can be also drawn. The H2 and CH4 formation increases with the number of Cu layers, while the formation of ethylene decreases. Formic acid was the only liquid species detected during CO2 reduction. Similar to the gaseous species, the formation of formic acid is strongly dependent on the number of Cu layers on the core@shell nanoparticles. The Au cubic nanoparticles with 7–8 layers of Cu showed the largest conversion of CO2 to formic acid at potentials higher than 0.8 V vs. RHE. The observed trends in reactivity and selectivity are linked to the catalyst composition, surface structure and strain/electronic effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to deepen the knowledge about the origin of the CO preoxidation process and the intrinsic catalytic activity of Pt superficial steps toward CO oxidation, a series of CO stripping experiments were performed on stepped Pt electrodes in acidic medium. For the occurrence of CO preoxidation, it was found that it arises (reproducibly) whenever four interconnected conditions are simultaneously fulfilled: (1) CO adsorption at potentials lower than about 0.2 V; (2) on surfaces saturated with COads; (3) in the presence of traces of CO in solution; (4) in the presence of surface steps. If any of these four conditions is not satisfied, the CO preoxidation pathway does not appear, even though the steps on the electrode surface are completely covered by CO. By controlling the removal of the CO adlayer (voltammetrically), we show that once the CO adlayer has been partially oxidized, the (111) terrace sites of stepped surfaces are released earlier than the (110) step sites. Moreover, if (110) steps are selectively decorated with CO, its oxidation occurs only at potentials ∼150 mV higher than the CO preoxidation peak. Our results systematically demonstrate that step sites are less active to oxidize CO than those ones responsible for the CO preoxidation process. Once the sites responsible for the CO preoxidation are made free, there is no apparent motion of the remaining adsorbed CO layer, suggesting that the activation of the surface controls the whole process, rather than the diffusion of COads toward hypothetically “most active sites”. Voltammetric and chronoamperometric experiments performed on partially covered CO adlayers suggest that adsorbed CO behave as a motionless species during its oxidation, in which the CO adlayer is removed piece by piece. By means of in situ FTIR experiments, the stretching frequency of CO selectively adsorbed on (110) step sites was examined. Band frequency results confirm that those molecules adsorbed on steps are fully coupled with the adsorbed CO on (111) terraces when the surface reaches full coverage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The direct CO2 electrochemical reduction on model platinum single crystal electrodes Pt(hkl) is studied in [C2mim+][NTf2−], a suitable room temperature ionic liquid (RTIL) medium due to its moderate viscosity, high CO2 solubility and conductivity. Single crystal electrodes represent the most convenient type of surface structured electrodes for studying the impact of RTIL ion adsorption on relevant electrocatalytic reactions, such as surface sensitive electrochemical CO2 reduction. We propose here based on cyclic voltammetry and in situ electrolysis measurements, for the first time, the formation of a stable adduct [C2mimH–CO2−] by a radical–radical coupling after the simultaneous reduction of CO2 and [C2mim+]. It means between the CO2 radical anion and the radical formed from the reduction of the cation [C2mim+] before forming the corresponding electrogenerated carbene. This is confirmed by the voltammetric study of a model imidazolium-2-carboxylate compound formed following the carbene pathway. The formation of that stable adduct [C2mimH–CO2−] blocks CO2 reduction after a single electron transfer and inhibits CO2 and imidazolium dimerization reactions. However, the electrochemical reduction of CO2 under those conditions provokes the electrochemical cathodic degradation of the imidazolium based RTIL. This important limitation in CO2 recycling by direct electrochemical reduction is overcome by adding a strong acid, [H+][NTf2−], into solution. Then, protons become preferentially adsorbed on the electrode surface by displacing the imidazolium cations and inhibiting their electrochemical reduction. This fact allows the surface sensitive electro-synthesis of HCOOH from CO2 reduction in [C2mim+][NTf2−], with Pt(110) being the most active electrode studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multimetallic shape-controlled nanoparticles offer great opportunities to tune the activity, selectivity, and stability of electrocatalytic surface reactions. However, in many cases, our synthetic control over particle size, composition, and shape is limited requiring trial and error. Deeper atomic-scale insight in the particle formation process would enable more rational syntheses. Here we exemplify this using a family of trimetallic PtNiCo nanooctahedra obtained via a low-temperature, surfactant-free solvothermal synthesis. We analyze the competition between Ni and Co precursors under coreduction “one-step” conditions when the Ni reduction rates prevailed. To tune the Co reduction rate and final content, we develop a “two-step” route and track the evolution of the composition and morphology of the particles at the atomic scale. To achieve this, scanning transmission electron microscopy and energy dispersive X-ray elemental mapping techniques are used. We provide evidence of a heterogeneous element distribution caused by element-specific anisotropic growth and create octahedral nanoparticles with tailored atomic composition like Pt1.5M, PtM, and PtM1.5 (M = Ni + Co). These trimetallic electrocatalysts have been tested toward the oxygen reduction reaction (ORR), showing a greatly enhanced mass activity related to commercial Pt/C and less activity loss than binary PtNi and PtCo after 4000 potential cycles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have employed identical location transmission electron microscopy (IL-TEM) to study changes in the shape and morphology of faceted Pt nanoparticles as a result of electrochemical cycling; a procedure typically employed for activating platinum surfaces. We find that the shape and morphology of the as-prepared hexagonal nanoparticles are rapidly degraded as a result of potential cycling up to +1.3 V. As few as 25 potential cycles are sufficient to cause significant degradation, and after about 500–1000 cycles the particles are dramatically degraded. We also see clear evidence of particle migration during potential cycling. These finding suggest that great care must be exercised in the use and study of shaped Pt nanoparticles (and related systems) as electrocatlysts, especially for the oxygen reduction reaction where high positive potentials are typically employed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

N-doped activated carbon fibers have been synthesized by using chemically polymerized aniline as source of nitrogen. Commercial activated carbon fibers (A20) were chemically modified with a thin film of polyaniline (PANI) inside the microporosity of the carbon fibers. The modified activated carbon fibers were carbonized at 600 and 800 °C, respectively. In this way, activated carbon fibers modified with surface nitrogen species were prepared in order to analyze their influence in the performance of electrochemical capacitors in organic electrolyte. Symmetric capacitors were made of activated carbon fibers and N-doped activated carbon fibers and tested in a two-electrode cell configuration, using triethylmethylammonium tetrafluoroborate/propylene carbonate (TEMA-BF4/PC) as electrolyte. The effect of nitrogen species in the degradation or stabilization of the capacitor has been analyzed through floating durability tests using a high voltage charging (3.2 V). The results show higher stabilizing effect in carbonized samples (N-ACF) than in non-carbonized samples and pristine activated carbon fibers, which is attributed to the presence of aromatic nitrogen group, especially positively charged N-functional groups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrochemical quartz crystal microbalance was used to monitor the mass changes during the electrochemical characterization of a zeolite-templated carbon (ZTC) in 1 M H2SO4 medium. Under electrochemical oxidation conditions, a high anodic current and a net mass increase were recorded, resulting in the increase of the specific capacitance owing to the contribution of the pseudocapacitance, mainly derived from the hydroquinone–quinone redox couple. Under more severe electrochemical conditions, a net mass loss was observed, revealing that electrochemical gasification took place. Surface chemistry, before and after the electrochemical treatments, was analyzed through temperature programmed desorption experiments. Furthermore, in situ Raman spectroscopy was used to further characterize the structural changes produced in ZTC under the electrochemical conditions applied, supporting that high potential values produce the electrochemical oxidation and degradation of the carbon material.