51 resultados para Colegio Mixto San vicente
Resumo:
According to the importance of rehabilitation and recovery of Architectural Heritage in the live of people, this paper is aimed to strengthen the traditional methods of stone vaults calculation taking advantage of the technological characteristics of the powerful program ANSYS Workbench. As an example of this, it could find out the possible pathologies that could arise during the construction history of the building. To limit this research, the upper vault of the main chapel of the Santiago parish church in Orihuela -Alicante- is selected as a reference which is a Jeronimo Quijano´s important building work in the XVI century in the Renaissance. Moreover, it is an innovative stone masonry vault that consists of 8 double intercrossed arches with each other and braced by severies. During the seventeenth century there was a lantern in the central cap and it is unknown why it was removed. Its construction could justify the original constructive solution with intercrossed arches that freed the center to create a more enlightened and comfortable presbytery. By similarity with other Quijano’s works, it is considered a small lantern drilling the central spherical cap. It is proposed to carry out a comparative study of it with different architectural solutions from the same period and based on several common parameters such as: a vault of square plant with spherical surround, intercrossed arches, a possible lantern, the dimension of the permitted space, similar states of loads and compact limestone masonry. The three solutions are mainly differentiated by their size and the type of lantern and its comparison lets us know which one is the most resistant and stable. The other two building works maintain some connection with the Quijano's professional scope. It has selected the particular case of the Communion chapel of the Basilica in Elche (a large prismatic lantern with a large cylindrical drum that starts from the own arches and an upper hemispherical dome), for its conservation, its proximity to Orihuela and its implementation during the century XVIII. Finally, a significant Dome Spanish Renaissance complete the selection: a cross vault of the Benavides Chapel of the Saint Francisco Convent in Baeza - Jaén-, designed by Andres of Vandelvira in the sixteenth century (a large hemispherical dome that starts from the own arcs). To simplify the calculation and standardize the work that have to be contrasted, all of them were considered with some similar characteristics: 30 cm constant thickness, the intercrossed arches were specifically analyzed and had identical loads, Young's modulus and Poisson's ratio. Regarding the calculation solutions, in general terms, the compressive stresses predominate, influencing on it the joint collaboration of the filling material on the vault, the vault itself, the thick side walls, the buttresses and the top cover weight . In addition, the three solutions are suitable, being the Orihuela one the safest and the Baeza one the riskiest for its large dimensions. Thus, the idea of intercrossed arches with suitable thickness would allow carry out the heaviest lantern and this would confirm it as a Renaissance architectural typology built in stone.
Resumo:
Dealing with the environmental problems is one of the biggest challenges within the field of architectural technology. Solutions to this problem are mostly exclusively sought in materials and computer technology. However, far more attention should be paid to humans and their role in this problem. This paper presents a small part of our bachelor thesis, which started as an investigation on the Dutch terraced house and through research ended as a study on the human behaviour and motivation. The first part of this paper, the evolution, is focussed on the traditional way of problem solving. The second part, the revolution, is focussed on human behaviour and motivation. These two studies put together lead to our conclusion: The only way to structurally solve our environmental problem is to revolutionize our way of building by involving the human interaction into our solution instead of forcing it out.
Resumo:
On a global level the population growth and increase of the middle class lead to a growing demand on material resources. The built environment has an enormous impact on this scarcity. In addition, a surplus of construction and demolition waste is a common problem. The construction industry claims to recycle 95% of this waste but this is in fact mainly downcycling. Towards the circular economy, the quality of reuse becomes of increasing importance. Buildings are material warehouses that can contribute to this high quality reuse. However, several aspects to achieve this are unknown and a need for more insight into the potential for high quality reuse of building materials exists. Therefore an instrument has been developed that determines the circularity of construction waste in order to maximise high quality reuse. The instrument is based on three principles: ‘product and material flows in the end of life phase’, ‘future value of secondary materials and products’ and ‘the success of repetition in a new life cycle’. These principles are further divided into a number of criteria to which values and weighting factors are assigned. A degree of circularity can then be determined as a percentage. A case study for a typical 70s building is carried out. For concrete, the circularity is increased from 25% to 50% by mapping out the potential for high quality reuse. During the development of the instrument it was clarified that some criteria are difficult to measure. Accurate and reliable data are limited and assumptions had to be made. To increase the reliability of the instrument, experts have reviewed the instrument several times. In the long-term, the instrument can be used as a tool for quantitative research to reduce the amount of construction and demolition waste and contribute to the reduction of raw material scarcity.
Resumo:
Sustainability, understood in its beginnings as a common horizon for multiple practices and fields of study, has gradually given way to the development of increasingly sophisticated tools, with distinct dominant meanings established for each discipline. Within the field of material technologies for architectural production, sustainability seems to have found its most fertile ground in topics such as recycling, the use of "bio" materials, or energetic efficiency. However, to improve the understanding of the impact of technology on our ways of living, it appears increasingly necessary to move from the deterministic logic of sustainability into the relational domain of ecology, where the use and deployment of technologies can be observed through the multiplicity of its effects and the diversity of actors involved. In this paper we will address the case of the rehabilitation of several traditional houses located in the Murcian town of Blanca to host the “Espacio Doméstico” VideoArt Center (EDOM). In this action the selection and implementation of technologies have been aimed at impacting on diverse aspects including local communities, digital manufacturing, recycling, and policies regarding the rehabilitation of heritage buildings. While the initial approach was to address housing recovery as a heterogeneous accumulation of stories, technologies or material deployments of the domestic, our intervention strategies ascribed to the different technologies the role of mediating with existing elements through the incorporation of the very different visions of sustainability. Thus, we displayed artifacts produced by digitally manufactured methacrylate assembled on IKEA structures, fluorescent power lines supported by insulators on the wall, fluorescent tattoos on walls and ceilings that guide and extend the configuration of existing flooring, esparto furniture and fabrics produced by the esparto women workers’ and village women’s associations, re-appropriations of old furniture through the implementation of new media technologies, etc. If we can see seduction as the process of converting affinities and disagreements into affirmative communication, then the EDOM proposal can be seen as an active seduction process between technologies and users who approach this kind of cultural artifacts. Through these permanently active processes, art technologies will refer the viewer to complex sensory experiences, where a combination of parody, memory and sound pushes the user to the limit of mere comprehension of works of art. This more relational approach to the issue of heritage rehabilitation, technology or art institutions is offered as an area of controversy and debate on the scope of political ecology and its potential impact on the architect’s professional practice.