89 resultados para Mecánica de los Medios Continuos y Teoría de Estructuras


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanical behaviour of transventilated façades performed by natural stone is necessarily based on the correct execution of both anchoring elements on the stone cladding as in the ones corresponding to the enclosure support, either with brick masonry walls or reinforced concrete walls. In the case studied in the present work, the origin of the damages suffered on the façade of a building located in Alcoy has been analyzed, where the detachment of part of the outer enclosure occurred. This enclosure is a transventilated façade formed by Bateig Blue stone tiles. To this end, “in situ” tests of the anchoring systems employed have been performed, as well as laboratory tests of mechanical characterization of the material and of different types of anchor, comparing these results with those obtained in both the simplified analytical models of continuum mechanics as developed by the Finite Element Method (FEM).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both strain and damage sensing properties on carbon nanofiber cement composites (CNFCC) are reported in the present paper. Strain sensing tests were first made on the material’s elastic range. The applied loading levels have been previously calculated from mechanical strength tests. The effect of several variables on the strain-sensing function was studied, e.g. cement pastes curing age, current density, loading rate or maximum stress applied. All these parameters were discussed using the gage factor as reference. After this first set of elastic experiments, the same specimens were gradually loaded until material’s failure. At the same time both strain and resistivity were measured. The former was controlled using strain gages, and the latter using a multimeter on a four probe setup. The aim of these tests was to prove the sensitivity of these CNF composites to sense their own damage, i.e. check the possibility of fabricating structural damage sensors with CNFCC’s. All samples with different CNF dosages showed good strain-sensing capacities for curing periods of 28 days. Furthermore, a 2%CNF reinforced cement paste has been sensitive to its own structural damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of vibrations and displacements is a hot topic in structural engineering. Although there is a wide variety of methods for vibration analysis, direct measurement of displacements in the mid and high frequency range is not well solved and accurate devices tend to be very expensive. Low-cost systems can be achieved by applying adequate image processing algorithms. In this paper, we propose the use of a commercial pocket digital camera, which is able to register more than 420 frames per second (fps) at low resolution, for accurate measuring of small vibrations and displacements. The method is based on tracking elliptical targets with sub-pixel accuracy. Our proposal is demonstrated at a 10 m distance with a spatial resolution of 0.15 mm. A practical application over a simple structure is given, and the main parameters of an attenuated movement of a steel column after an impulsive impact are determined with a spatial accuracy of 4 µm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present paper, changes in mechanical properties of Portland cement-based mortars due to the addition of carbon nanotubes (CNT) and corrosion of embedded steel rebars in CNT cement pastes are reported. Bending strength, compression strength, porosity and density of mortars were determined and related to the CNT dosages. CNT cement paste specimens were exposed to carbonation and chloride attacks, and results on steel corrosion rate tests were related to CNT dosages. The increase in CNT content implies no significant variations of mechanical properties but higher steel corrosion intensities were observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The San Julián’s stone is the main material used to build the most important historical buildings in Alicante city (Spain). This paper describes the analysis developed to obtain the relationship between the static and the dynamic modulus of this sedimentary rock heated at different temperatures. The rock specimens have been subjected to heating processes at different temperatures to produce different levels of weathering on 24 specimens. The static and dynamic modulus has been measured for every specimen by means of the ISRM standard and ultrasonic tests, respectively. Finally, two analytic formulas are proposed for the relationship between the static and the dynamic modulus for this stone. The results have been compared with some relationships proposed by different researchers for other types of rock. The expressions presented in this paper can be useful for the analysis, using non-destructive techniques, of the integrity level of historical constructions built with San Julián’s stone affected by fires.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The viability of carbon nanofiber (CNF) composites in cement matrices as a self-heating material is reported in this paper. This functional application would allow the use of CNF cement composites as a heating element in buildings, or for deicing pavements of civil engineering transport infrastructures, such as highways or airport runways. Cement pastes with the addition of different CNF dosages (from 0 to 5% by cement mass) have been prepared. Afterwards, tests were run at different fixed voltages (50, 100 and 150V), and the temperature of the specimens was registered. Also the possibility of using a casting method like shotcrete, instead of just pouring the fresh mix into the mild (with no system’s efficiency loss expected) was studied. Temperatures up to 138 °C were registered during shotcrete-5% CNF cement paste tests (showing initial 10 °C/min heating rates). However a minimum voltage was required in order to achieve a proper system functioning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work discusses the results from tests which were performed in order to study the effect of high temperatures in the physical and mechanical properties of a calcarenite (San Julian's stone). Samples, previously heated at different temperatures (from 105 °C to 600 °C), were tested. Non-destructive tests (porosity and ultrasonic wave propagation) and destructive tests (uniaxial compressive strength and slake durability test) were performed over available samples. Furthermore, the tests were carried out under different conditions (i.e. air-cooled and water-cooled) in order to study the effect of the fire off method. The results show that uniaxial compressive strength and elastic parameters (i.e. elastic modulus and Poisson's ratio), decrease as the temperature increases for the tested range of temperatures. A reduction of the uniaxial compressive strength up to 35% and 50% is observed in air-cooled and water-cooled samples respectively when the samples are heated to 600 °C. Regarding the Young's modulus, a fall over 75% and 78% in air-cooled and water-cooled samples respectively is observed. Poisson's ratio also declines up to 44% and 68% with the temperature in air-cooled and water-cooled samples respectively. Slake durability index also exhibits a reduction with temperature. Other physical properties, closely related with the mechanical properties of the stone, are porosity, attenuation and propagation velocity of ultrasonic waves in the material. All exhibit considerable changes with temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrical resistivity of carbon fiber reinforced cement composites (CFRCCs) has been widely studied, because of their utility as multifunctional materials. The percolation phenomenon has also been reported and modeled when the electrical behavior of those materials had to be characterized. Amongst the multiple applications of multifunctional cement composites the ability of a CFRCC to act as a strain sensor is attractive. This paper provides experimental data relating self-sensing function and percolation threshold, and studying the effect of fiber aspect ratio on both phenomena. Higher fiber slenderness permitted percolation at lower carbon fiber addition, affected mechanical properties and improved strain-sensing sensitivity of CFRCC, which was also improved if percolation had not been achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a structural analysis of a masonry chimney built in the 1940s, which is currently being cataloged as local interest heritage. This structure has not served any industrial purpose for the last thirty years. The chimney is located in the town of Agost (Alicante - Spain) and directly exposed to the prevailing winds from the sea, as it is approximately 12 km away from the waterfront and there are not any significant barriers, which could protect the structure against the wind. There are longitudinal cracks and fissures all along the shaft because of the chimney’s geometrical characteristics, the effect of the masonry creep and especially the lack of maintenance. Moreover, there is also a permanent bending deformation in the upper 1/3 of the height due to the wind pressure. A numerical analysis for the static behavior against gravity and wind loads was performed using the structure’s current conditions after a detailed report of its geometry, its construction system and the cracking pattern. Afterwards, the dynamic behavior was studied, i.e. a seismic analysis using both response spectra and accelerograms in order to examine the structural stability. This work shows the pre-monitoring analysis before any experimental testing. Using the current results the future test conditions will be determined (e.g. number of sensors and monitoring point location, excitation systems, etc) prior to a possible structural reinforcement by applying composite material (fiber reinforced polymers).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last few decades, the use of cast in situ reinforced concrete sandwich panels for the construction of low- to mid-rise buildings has become more and more widespread due to several interesting properties of this construction technique, such as fast construction and high thermal and acoustic performances. Nonetheless the level of knowledge of the structural behavior of systems made of squat reinforced concrete sandwich panels is still not so consolidated, especially with reference to the seismic response, due to the lack of experimental studies. In recent years, while various experimental tests have been conducted on single panels aimed at assessing their seismic capacity, only few tests have been carried out on more complex structural systems. In this paper, the experimental results of a series of shaking-table tests performed on a full-scale 3-storey building are presented in detail. The main goal is to give to the scientific community the possibility of develop independent interpretation of these experimental results. An in-depth interpretation of the discrepancies between the analytical predictions and the experimental results is beyond the objective of this paper and is still under development. Nonetheless, preliminary interpretations indicate that both the stiffness and the strength of the building under dynamic excitation appear quite superior with respect to those expected from the results of previous pseudo-static cyclic tests conducted on simple specimens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The requirements for edge protection systems on most sloped work surfaces (class C, according to EN 13374-2013 code) in construction works are studied in this paper. Maximum deceleration suffered by a falling body and maximum deflection of the protection system were analyzed through finite-element models and confirmed through full-scale experiments. The aim of this work is to determine which value for deflection system entails a safe deceleration for the human body. This value is compared with the requirements given by the current version of EN 13374-2013. An additional series of experiments were done to determine the acceleration linked to minimum deflection required by code (200 mm) during the retention process. According to the obtained results, a modification of this value is recommended. Additionally, a simple design formula for this falling protection system is proposed as a quick tool for the initial steps of design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Subpixel techniques are commonly used to increase the spatial resolution in tracking tasks. Object tracking with targets of known shape permits obtaining information about object position and orientation in the three-dimensional space. A proper selection of the target shape allows us to determine its position inside a plane and its angular and azimuthal orientation under certain limits. Our proposal is demonstrated both numerical and experimentally and provides an increase the accuracy of more than one order of magnitude compared to the nominal resolution of the sensor. The experiment has been performed with a high-speed camera, which simultaneously provides high spatial and temporal resolution, so it may be interesting for some applications where this kind of targets can be attached, such as vibration monitoring and structural analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the “Variation Guggenheim 3: Mirador de la palmera” project, situated in Daya Vieja (Alicante-Spain). This structure is inspired by the Guggenheim museum of New York and is designed to protect a land-mark palm-tree from wind loads. This six – trunk palm tree was declared monument by the Valencian government in 2012. The structure that now protect it appears to fly around de palm tree creating a helicoidally skywalk made of steel, while retrofitting the lateral trunks of the tree to protect them from collapse. An 18 m. long straight beam starts on the top of this helix, and stretches towards a lookout point that offers a view of the whole village and its surroundings. The reduction of the visual impact of the structure on the tree was a major aim for the project design. The structural elements are as slender as possible to avoid the visual obstruction of tree. They are painted white, while the walkway steel corrugated plate is painted green in order to highlight its neat shape among the blur created by the apparent mess of bars of the supporting structure. The two main piles of this pedestrian bridge were designed in steel and geometrically resemble trees. A Ground Penetrating Radar analysis was performed to detect the palm root location and to decide the best foundation system. Slender cast in-situ steel-concrete micropiles along with a concrete pile-cap, raised some centimeters above the ground level, were used to reduce the damage to the roots. The projected pile-cap is a slender, continuous, circular ring; which geometry resembles a concrete bench. This structure has been a finalist in the Architecture Awards for the 2010-2014 best construction projects, held by the Diputación de Alicante.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

According to Eurocode 8, the seismic design of flat-bottom circular silos containing grain-like material is based on a rough estimate of the inertial force imposed on the structure by the ensiled content during an earthquake: 80% of the mass of the content multiplied by the peak ground acceleration. A recent analytical consideration of the horizontal shear force mobilised within the ensiled material during an earthquake proposed by some of the authors has resulted in a radically reduced estimate of this load suggesting that, in practice, the effective mass of the content is significantly less than that specified. This paper describes a series of laboratory tests that featured shaking table and a silo model, which were conducted in order to obtain some experimental data to verify the proposed theoretical formulations and to compare with the established code provisions. Several tests have been performed with different heights of ensiled material – about 0.5 mm diameter Ballotini glass – and different magnitudes of grain–wall friction. The results indicate that in all cases, the effective mass is indeed lower than the Eurocode specification, suggesting that the specification is overly conservative, and that the wall–grain friction coefficient strongly affects the overturning moment at the silo base. At peak ground accelerations up to around 0.35 g, the proposed analytical formulation provides an improved estimate of the inertial force imposed on such structures by their contents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the so-called Kiss Bridge. This structure resembles a kiss, a subtle touch of structures. The beams have been structurally designed to adapt the Japanese art of paper folding called "origami." The material used for constructing the floating beams is white reinforced concrete in the form of folded shells. The two geometrically different parts have distinct structural behaviors. The length of the main pathway of both structures is over 60 m. The pedestrian bridge crosses an artificial rainwater channel with a skew of 45° with respect to the referred channel. The joint between the cantilever structure and the Y-shaped one is located over the middle of the channel. Each stretch has different transversal sections. The pedestrian bridge is made with prestressed self-compacting reinforced concrete of 60 MPa. The foundation is shallow, comprising footings and footing beams made of 25 MPa conventional concrete. The cantilever structure with its foundations is designed as a semi-integral bridge whereas the Y-shaped one is an integral structure. The dynamic behavior of the structure was carefully studied to ensure that the dynamic loads generated by pedestrians do not cause excessive vibrations, especially to the cantilever structure, which could present dynamic interactions with the pedestrians walking. The bridge was recognized, in the 2014 edition of the fib Awards for Outstanding Concrete Structures, for having made a valuable contribution to the image and promotion of concrete structures.