19 resultados para visual object detection


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this project, we propose the implementation of a 3D object recognition system which will be optimized to operate under demanding time constraints. The system must be robust so that objects can be recognized properly in poor light conditions and cluttered scenes with significant levels of occlusion. An important requirement must be met: the system must exhibit a reasonable performance running on a low power consumption mobile GPU computing platform (NVIDIA Jetson TK1) so that it can be integrated in mobile robotics systems, ambient intelligence or ambient assisted living applications. The acquisition system is based on the use of color and depth (RGB-D) data streams provided by low-cost 3D sensors like Microsoft Kinect or PrimeSense Carmine. The range of algorithms and applications to be implemented and integrated will be quite broad, ranging from the acquisition, outlier removal or filtering of the input data and the segmentation or characterization of regions of interest in the scene to the very object recognition and pose estimation. Furthermore, in order to validate the proposed system, we will create a 3D object dataset. It will be composed by a set of 3D models, reconstructed from common household objects, as well as a handful of test scenes in which those objects appear. The scenes will be characterized by different levels of occlusion, diverse distances from the elements to the sensor and variations on the pose of the target objects. The creation of this dataset implies the additional development of 3D data acquisition and 3D object reconstruction applications. The resulting system has many possible applications, ranging from mobile robot navigation and semantic scene labeling to human-computer interaction (HCI) systems based on visual information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Object tracking with subpixel accuracy is of fundamental importance in many fields since it provides optimal performance at relatively low-cost. Although there are many theoretical proposals that lead to resolution increments of several orders of magnitude, in practice, this resolution is limited by the imaging systems. In this paper we propose and demonstrate through numerical models a realistic limit for subpixel accuracy. The final result is that maximum achievable resolution enhancement is connected with the dynamic range of the image, i.e. the detection limit is 1/2^(nr.bits). Results here presented may help to proper design of superresolution experiments in microscopy, surveillance, defense and other fields.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Object tracking with subpixel accuracy is of fundamental importance in many fields since it provides optimal performance at relatively low cost. Although there are many theoretical proposals that lead to resolution increments of several orders of magnitude, in practice this resolution is limited by the imaging systems. In this paper we propose and demonstrate through simple numerical models a realistic limit for subpixel accuracy. The final result is that maximum achievable resolution enhancement is connected with the dynamic range of the image, i.e., the detection limit is 1/2∧(nr.bits). The results here presented may aid in proper design of superresolution experiments in microscopy, surveillance, defense, and other fields.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article we describe a semantic localization dataset for indoor environments named ViDRILO. The dataset provides five sequences of frames acquired with a mobile robot in two similar office buildings under different lighting conditions. Each frame consists of a point cloud representation of the scene and a perspective image. The frames in the dataset are annotated with the semantic category of the scene, but also with the presence or absence of a list of predefined objects appearing in the scene. In addition to the frames and annotations, the dataset is distributed with a set of tools for its use in both place classification and object recognition tasks. The large number of labeled frames in conjunction with the annotation scheme make this dataset different from existing ones. The ViDRILO dataset is released for use as a benchmark for different problems such as multimodal place classification and object recognition, 3D reconstruction or point cloud data compression.