27 resultados para synthetic organic chemistry
Resumo:
Highly optically enriched, protected, nitrogenated heterocycles with different ring sizes have been synthesized by a very efficient methodology consisting of the asymmetric transfer hydrogenation of N-(tert-butylsulfinyl)haloimines followed by treatment with a base to promote an intramolecular nucleophilic substitution process. N-Protected aziridines, pyrrolidines, piperidines, and azepanes bearing aromatic, heteroaromatic, and aliphatic substituents have been obtained in very high yields and diastereomeric ratios up to >99:1. The free heterocycles can be easily obtained by a simple and mild desulfinylation procedure. Both enantiomers of the free heterocycles can be prepared with the same good results by changing the absolute configuration of the sulfur atom of the sulfinyl group.
Resumo:
The use of proline as catalyst for the aldol process has given a boost to the development of organocatalysis as a research area. Since then, a plethora of organocatalysts of diverse structures have been developed for this and other organic transformations under different reaction conditions. The use of an organic molecule as catalyst to promote a reaction meets several principles of Green Chemistry. The implementation of solvent-free methodologies to carry out the aldol reaction was soon envisaged. These solvent-free processes can be performed using conventional magnetic stirring or applying ball milling techniques and are even compatible with the use of supported organocatalysts as promoters, which allows the recovery and reuse of the organocatalysts. In addition, other advantages such as the reduction of the required amount of nucleophile and the acceleration of the reaction are accomplished by using solvent-free conditions leading to a “greener” and more sustainable process.
Resumo:
Hydrogen peroxide is a substrate or side-product in many enzyme-catalyzed reactions. For example, it is a side-product of oxidases, resulting from the re-oxidation of FAD with molecular oxygen, and it is a substrate for peroxidases and other enzymes. However, hydrogen peroxide is able to chemically modify the peptide core of the enzymes it interacts with, and also to produce the oxidation of some cofactors and prostetic groups (e.g., the hemo group). Thus, the development of strategies that may permit to increase the stability of enzymes in the presence of this deleterious reagent is an interesting target. This enhancement in enzyme stability has been attempted following almost all available strategies: site-directed mutagenesis (eliminating the most reactive moieties), medium engineering (using stabilizers), immobilization and chemical modification (trying to generate hydrophobic environments surrounding the enzyme, to confer higher rigidity to the protein or to generate oxidation-resistant groups), or the use of systems capable of decomposing hydrogen peroxide under very mild conditions. If hydrogen peroxide is just a side-product, its immediate removal has been reported to be the best solution. In some cases, when hydrogen peroxide is the substrate and its decomposition is not a sensible solution, researchers coupled one enzyme generating hydrogen peroxide “in situ” to the target enzyme resulting in a continuous supply of this reagent at low concentrations thus preventing enzyme inactivation. This review will focus on the general role of hydrogen peroxide in biocatalysis, the main mechanisms of enzyme inactivation produced by this reactive and the different strategies used to prevent enzyme inactivation caused by this “dangerous liaison”.
Resumo:
Chiral L-prolinamides 2 containing the (R,R)- and (S,S)-trans-cyclohexane-1,2-diamine scaffold and a 2-pyrimidinyl unit are synthesized and used as general organocatalysts for intermolecular and intramolecular aldol reactions with 1,6-hexanedioic acid as a co-catalyst under solvent-free conditions. The intermolecular reaction between ketone–aldehyde and aldehyde–aldehyde must be performed under wet conditions with catalyst (S,S)-2b at 10 °C, which affords anti-aldols with high regio-, diastereo-, and enantioselectivities. For the Hajos–Parrish–Eder–Sauer–Wiechert reaction, both diastereomers of catalyst 2 give similar results at room temperature in the absence of water to give the corresponding Wieland–Miescher ketone and derivatives. Both types of reactions were scaled up to 1 g, and the organocatalysts were recovered by extractive workup and reused without any appreciable loss in activity. DFT calculations support the stereochemical results of the intermolecular process and the bifunctional role played by the organocatalyst by providing a computational comparison of the H-bonding networks occurring with catalysts 2a and 2b.
Resumo:
Microwave irradiation has considerably enhanced the efficiency of the asymmetric transfer hydrogenation of N-(tert-butylsulfinyl)imines in isopropyl alcohol catalyzed by a ruthenium complex bearing the achiral ligand 2-amino-2-methylpropan-1-ol. In addition to shortening reaction times for the transfer hydrogenation processes to only 30 min, the amounts of ruthenium catalyst and isopropyl alcohol can be considerably reduced in comparison with our previous procedure assisted by conventional heating, which diminishes the environmental impact of this new protocol. This methodology can be applied to aromatic, heteroaromatic and aliphatic N-(tert-butylsulfinyl)ketimines, leading, after desulfinylation, to the expected primary amines in excellent yields and with enantiomeric excesses of up to 96 %.
Resumo:
Treatment of N-tritylated tetrazoles bearing aliphatic, aromatic, or heteroaromatic substituents (including functionalized ones) with lithium powder and a catalytic amount of naphthalene led to reductive removal of the trityl group to give excellent yields of the corresponding free tetrazoles without decomposition of the tetrazole ring. The detritylation process was successfully extended to several tetrazoles that are components of sartans, an interesting class of drugs. The chemoselectivity between trityl–tetrazole and trityl–amine bond-cleavage reactions was also studied. This method represents an efficient technique for deprotection of tritylated tetrazoles under non-acidic conditions.
Resumo:
The reaction of various 1-pivaloyl-1H-tetrazoles with excess lithium and a catalytic amount of naphthalene (20 mol%) led, after treatment with methanol, to the corresponding free tetrazoles through reductive C–N bond cleavage. This methodology represents a reasonable alternative to other nonreductive protocols.
Resumo:
Azomethine ylides, generated from imine-derived O-cinnamyl or O-crotonyl salicylaldeyde and α-amino acids, undergo intramolecular 1,3-dipolar cycloaddition, leading to chromene[4,3-b]pyrrolidines. Two reaction conditions are used: (a) microwave-assisted heating (200 W, 185 °C) of a neat mixture of reagents, and (b) conventional heating (170 °C) in PEG-400 as solvent. In both cases, a mixture of two epimers at the α-position of the nitrogen atom in the pyrrolidine nucleus was formed through the less energetic endo-approach (B/C ring fusion). In many cases, the formation of the stereoisomer bearing a trans-arrangement into the B/C ring fusion was observed in high proportions. Comprehensive computational and kinetic simulation studies are detailed. An analysis of the stability of transient 1,3-dipoles, followed by an assessment of the intramolecular pathways and kinetics are also reported.
Resumo:
A simple change in the polarity of the solvent allows both enantiomers of substituted succinimides to be obtained in the enantioselective conjugate addition reaction of aldehydes, mainly α,α-disubstituted, to maleimides catalysed by chiral carbamate-monoprotected trans-cyclohexane-1,2-diamines. Using a single enantiomer of the organocatalyst, both enantiomers of the resulting Michael adducts are obtained in high yields by simply changing the reaction solvent from aqueous DMF (up to 84 % ee) to chloroform (up to 86 % ee). Theoretical calculations are used to explain this uncommon reversal of the enantioselectivity; two transition state orientations of different polarities are differently favoured in polar or nonpolar solvents.
Resumo:
Naphthalene and biphenyl dianions are interesting compounds that can be obtained by double reduction of the corresponding arenes in solution with certain alkali metals. These dianions are highly reactive and rather elusive species with very high laying and highly delocalized electrons. They share many aspects of the reactivity of the alkali metal they originated from and consequently behave primarily as strong electron transfer (ET) reagents. We report here kinetic evidence for a different type of reactivity in their alkylation reactions with alkyl fluorides. By using cyclopropylmethyl fluoride (c-C3H5CH2F) as a very fast radical probe, we were able to settle that this alkylation does not involve the classical electron transfer reaction followed by radical coupling between diffusing radicals, but supports the alternative SN2 concerted mechanism, discerning thus this mechanistic SN2-ET dichotomy.
Resumo:
5-Carbapterocarpens, one of them displaying estrogenic activity, were prepared from α-aryltetralones in high yields through a one-pot, BBr3-promoted O-demethylation and cyclization sequence. The key α-aryltetralone intermediates were obtained by direct α-arylation of tetralones with o-alkoxybromoarenes in the presence of Pd2(dba)3 (2.5 mol-%) and tBu3PHBF4 (10 mol-%) as catalysts, together with 2.5 equiv. of KOH in dioxane/H2O (4:1), under microwave irradiation conditions (80 W, 100 °C, 40 min), leading to α-monoaryltetralones in good yields.
Resumo:
Resorcinol-Formaldehyde xerogels are organic polymers that can be easily tailored to have specific properties. These materials are composed of carbon, hydrogen and oxygen, and have a surface that is very rich in oxygen functionalities, and is therefore very hydrophilic. Their most interesting feature is that they may have the same chemical composition but a different porous texture. Consequently, the influence of porous characteristics, such as pore volume, surface area or pore size can be easily assessed. In this work, a commonly used desiccant, silica gel, is compared with organic xerogels to determine their rate and capacity of water adsorption, and to evaluate the role of surface chemistry versus porous texture. It was found that organic xerogels showed a higher rate of moisture adsorption than silica gel. Pore structure also seems to play an important role in water adsorption capacity. The OX-10 sample, whose porosity was mainly composed of micro-mesoporosity displayed a water adsorption capacity two times greater than that of the silica gel, and three times higher than that of the totally macroporous xerogel OX-2100. The presence of feeder pores (mesopores) that facilitate the access to the hydrophilic surface was observed to be the key factor for a good desiccant behaviour. Neither the total pore volume nor the high surface area (i.e. high microporosity) of the desiccant sample, is as important as the mesopore structure.