20 resultados para stars: individual (IRS 1)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an analysis of a 78 ks Chandra high-energy transmission gratings observation of the B0I star QV Nor, the massive donor of the wind-accreting pulsar 4U1538−52. The neutron star (NS) orbits its companion in a very close orbit (r < 1.4R*, in units of the stellar radii), thereby allowing probing of the innermost wind regions. The flux of the Fe Kα line during eclipse reduces to only ∼30% of the flux measured out of eclipse. This indicates that the majority of Fe fluorescence must be produced in regions close to the NS, at distances smaller than 1R* from its surface. The fact that the flux of the continuum decreases to only ∼3% during eclipse allows for a high contrast of the Fe Kα line fluorescence during eclipse. The line is not resolved and centered at 1.9368 0.0018 l = 0.0032 - + Å. From the inferred plasma speed limit of v < c l < 800 l D km s−1 and range of ionization parameters of log 1, 2 x = [- ], together with the stellar density profile, we constrain the location of the cold, dense material in the stellar wind of QV Nor using simple geometrical considerations. We then use the Fe Kα line fluorescence as a tracer of wind clumps and determine that these clumps in the stellar wind of QV Nor (B0I) must already be present at radii r < 1.25R*, close to the photosphere of the star.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context. The mechanism by which supergiant (sg)B[e] stars support cool, dense dusty discs/tori and their physical relationship with other evolved, massive stars such as luminous blue variables is uncertain. Aims. In order to investigate both issues we have analysed the long term behaviour of the canonical sgB[e] star LHA 115-S 18. Methods. We employed the OGLE II-IV lightcurve to search for (a-)periodic variability and supplemented these data with new and historic spectroscopy. Results. In contrast to historical expectations for sgB[e] stars, S18 is both photometrically and spectroscopically highly variable. The lightcurve is characterised by rapid aperiodic ` aring' throughout the 16 years of observations. Changes in the high excitation emission line component of the spectrum imply evolution in the stellar temperature - as expected for luminous blue variables - although somewhat surprisingly, spectroscopic and photometric variability appears not to be correlated. Characterised by emission in low excitation metallic species, the cool circumstellar torus appears largely unaffected by this behaviour. Finally, in conjunction with intense, highly variable He ii emission, X-ray emission implies the presence of an unseen binary companion. Conclusions. S18 provides observational support for the putative physical association of (a subset of) sgB[e] stars and luminous blue variables. Given the nature of the circumstellar environment of S18 and that luminous blue variables have been suggested as SN progenitors, it is tempting to draw a parallel to the progenitors of SN1987A and SN2009ip. Moreover the likely binary nature of S18 strengthens the possibility that the dusty discs/tori that characterise sgB[e] stars are the result of binary-driven mass-loss; consequently such stars may provide a window on the short lived phase of mass-transfer in massive compact binaries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-mass X-ray binaries consist of a massive donor star and a compact object. While several of those systems have been well studied in X-rays, little is known for most of the donor stars as they are often heavily obscured in the optical and ultraviolet regime. There is an opportunity to observe them at infrared wavelengths, however. The goal of this study is to obtain the stellar and wind parameters of the donor star in the X1908+075 high-mass X-ray binary system with a stellar atmosphere model to check whether previous studies from X-ray observations and spectral morphology lead to a sufficient description of the donor star. We obtained H- and K-band spectra of X1908+075 and analysed them with the Potsdam Wolf-Rayet (PoWR) model atmosphere code. For the first time, we calculated a stellar atmosphere model for the donor star, whose main parameters are: Mspec = 15 ± 6 M⊙, T∗ = 23-3+6 kK, log geff = 3.0 ± 0.2 and log L/L⊙ = 4.81 ± 0.25. The obtained parameters point towards an early B-type (B0–B3) star, probably in a supergiant phase. Moreover we determined a more accurate distance to the system of 4.85 ± 0.50 kpc than the previously reported value.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the timing and spectral properties of the low-magnetic field, transient magnetar SWIFT J1822.3−1606 as it approached quiescence. We coherently phase-connect the observations over a time-span of ∼500 d since the discovery of SWIFT J1822.3−1606 following the Swift-Burst Alert Telescope (BAT) trigger on 2011 July 14, and carried out a detailed pulse phase spectroscopy along the outburst decay. We follow the spectral evolution of different pulse phase intervals and find a phase and energy-variable spectral feature, which we interpret as proton cyclotron resonant scattering of soft photon from currents circulating in a strong (≳1014 G) small-scale component of the magnetic field near the neutron star surface, superimposed to the much weaker (∼3 × 1013 G) magnetic field. We discuss also the implications of the pulse-resolved spectral analysis for the emission regions on the surface of the cooling magnetar.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In 2013 April a new magnetar, SGR 1745−2900, was discovered as it entered an outburst, at only 2.4 arcsec angular distance from the supermassive black hole at the centre of the Milky Way, Sagittarius A*. SGR 1745−2900 has a surface dipolar magnetic field of ∼2 × 1014 G, and it is the neutron star closest to a black hole ever observed. The new source was detected both in the radio and X-ray bands, with a peak X-ray luminosity LX ∼ 5 × 1035 erg s−1. Here we report on the long-term Chandra (25 observations) and XMM–Newton (eight observations) X-ray monitoring campaign of SGR 1745−2900 from the onset of the outburst in 2013 April until 2014 September. This unprecedented data set allows us to refine the timing properties of the source, as well as to study the outburst spectral evolution as a function of time and rotational phase. Our timing analysis confirms the increase in the spin period derivative by a factor of ∼2 around 2013 June, and reveals that a further increase occurred between 2013 October 30 and 2014 February 21. We find that the period derivative changed from 6.6 × 10−12 to 3.3 × 10−11 s s−1 in 1.5 yr. On the other hand, this magnetar shows a slow flux decay compared to other magnetars and a rather inefficient surface cooling. In particular, starquake-induced crustal cooling models alone have difficulty in explaining the high luminosity of the source for the first ∼200 d of its outburst, and additional heating of the star surface from currents flowing in a twisted magnetic bundle is probably playing an important role in the outburst evolution.