21 resultados para recent advances


Relevância:

60.00% 60.00%

Publicador:

Resumo:

There are a large number of image processing applications that work with different performance requirements and available resources. Recent advances in image compression focus on reducing image size and processing time, but offer no real-time solutions for providing time/quality flexibility of the resulting image, such as using them to transmit the image contents of web pages. In this paper we propose a method for encoding still images based on the JPEG standard that allows the compression/decompression time cost and image quality to be adjusted to the needs of each application and to the bandwidth conditions of the network. The real-time control is based on a collection of adjustable parameters relating both to aspects of implementation and to the hardware with which the algorithm is processed. The proposed encoding system is evaluated in terms of compression ratio, processing delay and quality of the compressed image when compared with the standard method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alternative energy technologies are greatly hindered by significant limitations in materials science. From low activity to poor stability, and from mineral scarcity to high cost, the current materials are not able to cope with the significant challenges of clean energy technologies. However, recent advances in the preparation of nanomaterials, porous solids, and nanostructured solids are providing hope in the race for a better, cleaner energy production. The present contribution critically reviews the development and role of mesoporosity in a wide range of technologies, as this provides for critical improvements in accessibility, the dispersion of the active phase and a higher surface area. Relevant examples of the development of mesoporosity by a wide range of techniques are provided, including the preparation of hierarchical structures with pore systems in different scale ranges. Mesoporosity plays a significant role in catalysis, especially in the most challenging processes where bulky molecules, like those obtained from biomass or highly unreactive species, such as CO2 should be transformed into most valuable products. Furthermore, mesoporous materials also play a significant role as electrodes in fuel and solar cells and in thermoelectric devices, technologies which are benefiting from improved accessibility and a better dispersion of materials with controlled porosity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The complete characterization of rock masses implies the acquisition of information of both, the materials which compose the rock mass and the discontinuities which divide the outcrop. Recent advances in the use of remote sensing techniques – such as Light Detection and Ranging (LiDAR) – allow the accurate and dense acquisition of 3D information that can be used for the characterization of discontinuities. This work presents a novel methodology which allows the calculation of the normal spacing of persistent and non-persistent discontinuity sets using 3D point cloud datasets considering the three dimensional relationships between clusters. This approach requires that the 3D dataset has been previously classified. This implies that discontinuity sets are previously extracted, every single point is labeled with its corresponding discontinuity set and every exposed planar surface is analytically calculated. Then, for each discontinuity set the method calculates the normal spacing between an exposed plane and its nearest one considering 3D space relationship. This link between planes is obtained calculating for every point its nearest point member of the same discontinuity set, which provides its nearest plane. This allows calculating the normal spacing for every plane. Finally, the normal spacing is calculated as the mean value of all the normal spacings for each discontinuity set. The methodology is validated through three cases of study using synthetic data and 3D laser scanning datasets. The first case illustrates the fundamentals and the performance of the proposed methodology. The second and the third cases of study correspond to two rock slopes for which datasets were acquired using a 3D laser scanner. The second case study has shown that results obtained from the traditional and the proposed approaches are reasonably similar. Nevertheless, a discrepancy between both approaches has been found when the exposed planes members of a discontinuity set were hard to identify and when the planes pairing was difficult to establish during the fieldwork campaign. The third case study also has evidenced that when the number of identified exposed planes is high, the calculated normal spacing using the proposed approach is minor than those using the traditional approach.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Active edible films represent one of the current and future trends in the development of new polymers for selected applications, particularly food packaging. Some biopolymers show excellent performance as carriers for active compounds extracted from natural sources and are able to be released at a controlled rate to packaged food. In this review we aim to present, in a comprehensive way, the most recent advances and updates in this subject, where much research is currently ongoing and new studies are reported very often. This review focuses on innovative biopolymer matrices, their processing to obtain edible active films, and present and future applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent advances in statistical downscaling have allowed the reconstruction of temperatures for the complete 1948–2011 period in a spatial resolution of 90 m and without gaps for the Valencian Community (Spain) and bordering areas. It presently enables analyses in this region, which allows the determination of recent temperature changes at subregional and local scales. The present work focuses on obtaining the thermicity index according to Rivas-Martínez, a well-known indicator of different thermotypes associated with bioclimatic horizons. The change in this index, which has happened in the region between 1948 and 2011, was calculated by generating fine-scale maps of the potential extension of different thermotypes. The results show a greater regression for the thermotypes in a finicolous position, e.g. Orotemperate, Supratemperate and Supramediterranean horizons, which herein indicate greater potential vulnerability in climate change. In the absence of, and given the need for, such fine-scale information, this work should be useful for specialized researchers to spatially limit the potentially most vulnerable biotopes to climate change.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, we propose a new methodology for the large scale optimization and process integration of complex chemical processes that have been simulated using modular chemical process simulators. Units with significant numerical noise or large CPU times are substituted by surrogate models based on Kriging interpolation. Using a degree of freedom analysis, some of those units can be aggregated into a single unit to reduce the complexity of the resulting model. As a result, we solve a hybrid simulation-optimization model formed by units in the original flowsheet, Kriging models, and explicit equations. We present a case study of the optimization of a sour water stripping plant in which we simultaneously consider economics, heat integration and environmental impact using the ReCiPe indicator, which incorporates the recent advances made in Life Cycle Assessment (LCA). The optimization strategy guarantees the convergence to a local optimum inside the tolerance of the numerical noise.