77 resultados para procesamiento lenguaje natural


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Uno de los problemas actuales en el dominio de la salud es reutilizar y compartir la información clínica entre profesionales, ya que ésta se encuentra escrita usando terminologías específicas. Una posible solución es usar un recurso de conocimiento común sobre el que mapear la información existente. Nuestro objetivo es comprobar si la adición de conocimiento semántico superficial puede mejorar los mapeados establecidos. Para ello experimentamos con un conjunto de etiquetas de NANDA-I y con un conjunto de descripciones de SNOMED-CT en castellano. Los resultados obtenidos en los experimentos muestran que la inclusión de conocimiento semántico superficial mejora significativamente el mapeado léxico entre los dos recursos estudiados.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

IARG-AnCora tiene como objetivo la anotación con papeles temáticos de los argumentos implícitos de las nominalizaciones deverbales en el corpus AnCora. Estos corpus servirán de base para los sistemas de etiquetado automático de roles semánticos basados en técnicas de aprendizaje automático. Los analizadores semánticos son componentes básicos en las aplicaciones actuales de las tecnologías del lenguaje, en las que se quiere potenciar una comprensión más profunda del texto para realizar inferencias de más alto nivel y obtener así mejoras cualitativas en los resultados.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Proyecto emergente centrado en la desambiguación de topónimos y la detección del foco geográfico en el texto. La finalidad es mejorar el rendimiento de los sistemas de recuperación de información geográfica. Se describen los problemas abordados, la hipótesis de trabajo, las tareas a realizar y los objetivos parciales alcanzados.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

El foco geográfico de un documento identifica el lugar o lugares en los que se centra el contenido del texto. En este trabajo se presenta una aproximación basada en corpus para la detección del foco geográfico en el texto. Frente a otras aproximaciones que se centran en el uso de información puramente geográfica para la detección del foco, nuestra propuesta emplea toda la información textual existente en los documentos del corpus de trabajo, partiendo de la hipótesis de que la aparición de determinados personajes, eventos, fechas e incluso términos comunes, pueden resultar fundamentales para esta tarea. Para validar nuestra hipótesis, se ha realizado un estudio sobre un corpus de noticias geolocalizadas que tuvieron lugar entre los años 2008 y 2011. Esta distribución temporal nos ha permitido, además, analizar la evolución del rendimiento del clasificador y de los términos más representativos de diferentes localidades a lo largo del tiempo.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Los métodos para Extracción de Información basados en la Supervisión a Distancia se basan en usar tuplas correctas para adquirir menciones de esas tuplas, y así entrenar un sistema tradicional de extracción de información supervisado. En este artículo analizamos las fuentes de ruido en las menciones, y exploramos métodos sencillos para filtrar menciones ruidosas. Los resultados demuestran que combinando el filtrado de tuplas por frecuencia, la información mutua y la eliminación de menciones lejos de los centroides de sus respectivas etiquetas mejora los resultados de dos modelos de extracción de información significativamente.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

El objetivo del trabajo consiste en reutilizar el Treebank de dependencias EPECDEP (BDT) para construir el gold standard de la sintaxis superficial del euskera. El paso básico consiste en el estudio comparativo de los dos formalismos aplicados sobre el mismo corpus: el formalismo de la Gramática de Restricciones (Constraint Grammar, CG) y la Gramática de Dependencias (Dependency Grammar, DP). Como resultado de dicho estudio hemos establecido los criterios lingüísticos necesarios para derivar la funciones sintácticas en estilo CG. Dichos criterios han sido implementados y evaluados, así en el 75% de los casos se derivan automáticamente las funciones sintácticas para construir el gold standard.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Este trabajo presenta el uso de una ontología en el dominio financiero para la expansión de consultas con el fin de mejorar los resultados de un sistema de recuperación de información (RI) financiera. Este sistema está compuesto por una ontología y un índice de Lucene que permite recuperación de conceptos identificados mediante procesamiento de lenguaje natural. Se ha llevado a cabo una evaluación con un conjunto limitado de consultas y los resultados indican que la ambigüedad sigue siendo un problema al expandir la consulta. En ocasiones, la elección de las entidades adecuadas a la hora de expandir las consultas (filtrando por sector, empresa, etc.) permite resolver esa ambigüedad.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

En este artículo se investigan técnicas automáticas para encontrar un modelo óptimo de características en el caso de un analizador de dependencias basado en transiciones. Mostramos un estudio comparativo entre algoritmos de búsqueda, sistemas de validación y reglas de decisión demostrando al mismo tiempo que usando nuestros métodos es posible conseguir modelos complejos que proporcionan mejores resultados que los modelos que siguen configuraciones por defecto.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Este artículo presenta un nuevo algoritmo de fusión de clasificadores a partir de su matriz de confusión de la que se extraen los valores de precisión (precision) y cobertura (recall) de cada uno de ellos. Los únicos datos requeridos para poder aplicar este nuevo método de fusión son las clases o etiquetas asignadas por cada uno de los sistemas y las clases de referencia en la parte de desarrollo de la base de datos. Se describe el algoritmo propuesto y se recogen los resultados obtenidos en la combinación de las salidas de dos sistemas participantes en la campaña de evaluación de segmentación de audio Albayzin 2012. Se ha comprobado la robustez del algoritmo, obteniendo una reducción relativa del error de segmentación del 6.28% utilizando para realizar la fusión el sistema con menor y mayor tasa de error de los presentados a la evaluación.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

En este trabajo se presenta un método para la detección de subjetividad a nivel de oraciones basado en la desambiguación subjetiva del sentido de las palabras. Para ello se extiende un método de desambiguación semántica basado en agrupamiento de sentidos para determinar cuándo las palabras dentro de la oración están siendo utilizadas de forma subjetiva u objetiva. En nuestra propuesta se utilizan recursos semánticos anotados con valores de polaridad y emociones para determinar cuándo un sentido de una palabra puede ser considerado subjetivo u objetivo. Se presenta un estudio experimental sobre la detección de subjetividad en oraciones, en el cual se consideran las colecciones del corpus MPQA y Movie Review Dataset, así como los recursos semánticos SentiWordNet, Micro-WNOp y WordNet-Affect. Los resultados obtenidos muestran que nuestra propuesta contribuye de manera significativa en la detección de subjetividad.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

En este trabajo presentamos unos resultados preliminares obtenidos mediante la aplicación de una nueva técnica de construcción de grafos semánticos a la tarea de desambiguación del sentido de las palabras en un entorno multilingüe. Gracias al uso de esta técnica no supervisada, inducimos los sentidos asociados a las traducciones de la palabra ambigua considerada en la lengua destino. Utilizamos las traducciones de las palabras del contexto de la palabra ambigua en la lengua origen para seleccionar el sentido más probable de la traducción. El sistema ha sido evaluado sobre la colección de datos de una tarea de desambiguación multilingüe que se propuso en la competición SemEval-2010, consiguiendo superar los resultados de todos los sistemas no supervisados que participaron en aquella tarea.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Actualmente existe una gran cantidad de empresas ofreciendo servicios para el análisis de contenido y minería de datos de las redes sociales con el objetivo de realizar análisis de opiniones y gestión de la reputación. Un alto porcentaje de pequeñas y medianas empresas (pymes) ofrecen soluciones específicas a un sector o dominio industrial. Sin embargo, la adquisición de la necesaria tecnología básica para ofrecer tales servicios es demasiado compleja y constituye un sobrecoste demasiado alto para sus limitados recursos. El objetivo del proyecto europeo OpeNER es la reutilización y desarrollo de componentes y recursos para el procesamiento lingüístico que proporcione la tecnología necesaria para su uso industrial y/o académico.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

DIANA es un proyecto coordinado en el que participan el grupo de Ingeniería del Lenguaje Natural y Reconocimiento de Formas (ELiRF) de la Universitat Politècnica de València y el grupo Centre de Llenguatge i Computació (CLiC) de la Universitat de Barcelona. Se trata de un proyecto del programa de I+D (TIN2012-38603) financiado por el Ministerio de Economía y Competitividad. Paolo Rosso coordina el proyecto DIANA y lidera el subproyecto DIANA-Applications y M. Antònia Martí lidera el subproyecto DIANA-Constructions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Proyecto emergente centrado en el tratamiento de textos educativos en castellano con la finalidad de reducir las barreras lingüísticas que dificultan la comprensión lectora a personas con deficiencias auditivas, o incluso a personas aprendiendo una lengua distinta a su lengua materna. Se describe la metodología aplicada para resolver los distintos problemas relacionados con el objetivo a conseguir, la hipótesis de trabajo y las tareas y los objetivos parciales alcanzados.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes the automatic process of building a dependency annotated corpus based on Ancora constituent structures. The Ancora corpus already has a dependency structure information layer, but the new annotated data applies a purely syntactic orientation and offers in this way a new resource to the linguistic research community. The paper details the process of reannotating the corpus, the linguistic criteria used and the obtained results.