18 resultados para pharmaceuticals in wastewater


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research paper deals with the evolution of the extracellular polymeric substances (EPS) produced in the mixed liquor of two 25 L bench-scale membrane bioreactors (MBRs), with micro (MF-MBR) and ultrafiltration (UF-MBR) submerged membranes. The conclusion focuses on the relationship between the operation and how EPS respond, demonstrating that significant changes in EPS concentration were commonly observed when abrupt changes in the operational conditions took place. Bound EPS (EPSb) showed moderate positive statistical correlations with sludge age and MLSS for the two MBRs. Soluble EPS (EPSs), on the other hand, showed a moderate negative statistical correlation between EPSs with the two parameters analyzed for MF-MBR and no correlation with the UF-MBR was found. With respect to the composition of EPS, EPSb were mostly made up of proteins (44–46%) whereas in EPSs, the three components (proteins, carbohydrates, and humic substances) appeared in approximately the same proportion. The statistical analysis exhibited strong positive correlations between EPSb and their constituents, however for EPSs, the correlation was strong only with carbohydrates and moderate with humic substances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, the filtration process and the biomass characteristics in a laboratory-scale submerged membrane bioreactor (MBR) equipped with a hollow fiber (HF) microfiltration membrane were studied at different solid retention times (SRT). The MBR was fed by synthetic wastewater and the organic loading rate (OLR) was 0.5, 0.2, 0.1, and 0.08 kg COD kg VSS−1 d−1 for 10, 30, 60, and 90 days of SRT, respectively. The hydraulic retention time was 8.4 h and the permeate flux was 6 L m−2 h−1(LMH). Data analysis confirmed that at all the studied SRTs, the HF-MBR operated very good obtaining of high quality permeates. Chemical Oxygen Demand (COD) removal efficiencies were higher than 95%. The best filtration performance was reached at SRT of 30 d. On the other hand, the respirometric analysis showed that biomass was more active and there was more biomass production at low SRTs. The concentration of soluble extracellular polymeric substances (EPS) decreased with increasing SRT. A decrease of soluble EPS caused a decrease of membrane fouling rate, decreasing the frequency of chemical cleanings. The floc size decreased with SRT increasing. At high SRTs, there was more friction among particles due to the increase of the cellular density and the flocs broke decreasing their size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A hydrological–economic model is introduced to describe the dynamics of groundwater-dependent economics (agriculture and tourism) for sustainable use in sparse-data drylands. The Amtoudi Oasis, a remote area in southern Morocco, in the northern Sahara attractive for tourism and with evidence of groundwater degradation, was chosen to show the model operation. Governing system variables were identified and put into action through System Dynamics (SD) modeling causal diagrams to program basic formulations into a model having two modules coupled by the nexus ‘pumping’: (1) the hydrological module represents the net groundwater balance (G) dynamics; and (2) the economic module reproduces the variation in the consumers of water, both the population and tourists. The model was operated under similar influx of tourists and different scenarios of water availability, such as the wet 2009–2010 and the average 2010–2011 hydrological years. The rise in international tourism is identified as the main driving force reducing emigration and introducing new social habits in the population, in particular concerning water consumption. Urban water allotment (PU) was doubled for less than a 100-inhabitant net increase in recent decades. The water allocation for agriculture (PI), the largest consumer of water, had remained constant for decades. Despite that the 2-year monitoring period is not long enough to draw long-term conclusions, groundwater imbalance was reflected by net aquifer recharge (R) less than PI + PU (G < 0) in the average year 2010–2011, with net lateral inflow from adjacent Cambrian formations being the largest recharge component. R is expected to be much less than PI + PU in recurrent dry spells. Some low-technology actions are tentatively proposed to mitigate groundwater degradation, such as: wastewater capture, treatment, and reuse for irrigation; storm-water harvesting for irrigation; and active maintenance of the irrigation system to improve its efficiency.