18 resultados para fuzzy multi-objective linear programming (FMOLP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Material docente de la asignatura «Simulación y Optimización de procesos químicos». Parte de Optimización OPTIMIZACIÓN TEMA 6. Conceptos Básicos 6.1 Introducción. Desarrollo histórico de la optimización de procesos. 6.2 Funciones y regiones cóncavas y convexas. 6.3 Optimización sin restricciones. 6.4 Optimización con restricciones de igualdad y desigualdad. Condiciones de optimalidad de Karush Khun Tucker 6.5 Interpretación de los Multiplicadores de Lagrange. TEMA 7. Programación lineal 7.1 Introducción. Planteamiento del problema en forma canónica y forma estándar. 7.2 Teoremas de la programación lineal 7.3 Resolución gráfica 7.4 Resolución en forma de tabla. El método simplex. 7.5 Variables artificiales. Método de la Gran M y método de las dos fases. 7.6 Conceptos básicos de dualidad. TEMA 8. Programación no lineal 8.1 Repaso de métodos numéricos de optimización sin restricciones 8.2 Optimización con restricciones. Fundamento de los métodos de programación cuadrática sucesiva y de gradiente reducido. TEMA 9. Introducción a la programación lineal y no lineal con variables discretas. 9.1 Conceptos básicos para la resolución de problemas lineales con variables discretas.(MILP, mixed integer linear programming) 9.2 Introducción a la programación no lineal con variables continuas y discretas (MINLP mixed integer non linear programming) 9.3 Modelado de problemas con variables binarias: 9.3.1 Conceptos básicos de álgebra de Boole 9.3.2 Transformación de expresiones lógicas a expresiones algebraicas 9.3.3 Modelado con variables discretas y continuas. Formulación de envolvente convexa y de la gran M.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we present a systematic method for the optimal development of bioprocesses that relies on the combined use of simulation packages and optimization tools. One of the main advantages of our method is that it allows for the simultaneous optimization of all the individual components of a bioprocess, including the main upstream and downstream units. The design task is mathematically formulated as a mixed-integer dynamic optimization (MIDO) problem, which is solved by a decomposition method that iterates between primal and master sub-problems. The primal dynamic optimization problem optimizes the operating conditions, bioreactor kinetics and equipment sizes, whereas the master levels entails the solution of a tailored mixed-integer linear programming (MILP) model that decides on the values of the integer variables (i.e., number of equipments in parallel and topological decisions). The dynamic optimization primal sub-problems are solved via a sequential approach that integrates the process simulator SuperPro Designer® with an external NLP solver implemented in Matlab®. The capabilities of the proposed methodology are illustrated through its application to a typical fermentation process and to the production of the amino acid L-lysine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are many models in the literature that have been proposed in the last decades aimed at assessing the reliability, availability and maintainability (RAM) of safety equipment, many of them with a focus on their use to assess the risk level of a technological system or to search for appropriate design and/or surveillance and maintenance policies in order to assure that an optimum level of RAM of safety systems is kept during all the plant operational life. This paper proposes a new approach for RAM modelling that accounts for equipment ageing and maintenance and testing effectiveness of equipment consisting of multiple items in an integrated manner. This model is then used to perform the simultaneous optimization of testing and maintenance for ageing equipment consisting of multiple items. An example of application is provided, which considers a simplified High Pressure Injection System (HPIS) of a typical Power Water Reactor (PWR). Basically, this system consists of motor driven pumps (MDP) and motor operated valves (MOV), where both types of components consists of two items each. These components present different failure and cause modes and behaviours, and they also undertake complex test and maintenance activities depending on the item involved. The results of the example of application demonstrate that the optimization algorithm provide the best solutions when the optimization problem is formulated and solved considering full flexibility in the implementation of testing and maintenance activities taking part of such an integrated RAM model.