17 resultados para Spanish and Portuguese-Speaking Working Group
Resumo:
Background: Only a minority of infants are exclusively breastfed for the recommended 6 months postpartum. Breast-feeding self-efficacy is a mother's confidence in her ability to breastfeed and is predictive of breastfeeding behaviors. The Prenatal Breast-feeding Self-efficacy Scale (PBSES) was developed among English-speaking mothers to measure breastfeeding self-efficacy before delivery. Objectives: To translate the PBSES into Spanish and assess its psychometric properties. Design: Reliability and validity assessment. Setting: A public hospital in Yecla, Spain. Participants: A convenience sample of 234 pregnant women in their third trimester of pregnancy. Methods: The PBSES was translated into Spanish using forward and back translation. A battery of self-administered questionnaires was completed by participants, including a questionnaire on sociodemographic variables, breastfeeding experience and intention, as well as the Spanish version of the PBSES. Also, data on exclusive breastfeeding at discharge were collected from hospital database. Dimensional structure, internal consistency and construct validity of the Spanish version of PBSES were assessed. Results: Confirmatory factor analysis suggested the presence of one construct, self-efficacy, with four dimensions or latent variables. Cronbach's alpha coefficient for internal consistency was 0.91. Response patterns based on decision to breastfeed during pregnancy provided evidence of construct validity. In addition, the scores of the Spanish version of the PBSES significantly predicted exclusive breastfeeding at discharge. Conclusions: The Spanish version of PBSES shows evidences of reliability, and contrasting group and predictive validity. Confirmatory factor analysis indicated marginal fit and further studies are needed to provide new evidence on the structure of the scale. The Spanish version of the PBSES can be considered a reliable measure and shows validity evidences.
Resumo:
A suitable knowledge of the orientation and motion of the Earth in space is a common need in various fields. That knowledge has been ever necessary to carry out astronomical observations, but with the advent of the space age, it became essential for making observations of satellites and predicting and determining their orbits, and for observing the Earth from space as well. Given the relevant role it plays in Space Geodesy, Earth rotation is considered as one of the three pillars of Geodesy, the other two being geometry and gravity. Besides, research on Earth rotation has fostered advances in many fields, such as Mathematics, Astronomy and Geophysics, for centuries. One remarkable feature of the problem is in the extreme requirements of accuracy that must be fulfilled in the near future, about a millimetre on the tangent plane to the planet surface, roughly speaking. That challenges all of the theories that have been devised and used to-date; the paper makes a short review of some of the most relevant methods, which can be envisaged as milestones in Earth rotation research, emphasizing the Hamiltonian approach developed by the authors. Some contemporary problems are presented, as well as the main lines of future research prospected by the International Astronomical Union/International Association of Geodesy Joint Working Group on Theory of Earth Rotation, created in 2013.