28 resultados para Query expansion, Text mining, Information retrieval, Chinese IR
Resumo:
El foco geográfico de un documento identifica el lugar o lugares en los que se centra el contenido del texto. En este trabajo se presenta una aproximación basada en corpus para la detección del foco geográfico en el texto. Frente a otras aproximaciones que se centran en el uso de información puramente geográfica para la detección del foco, nuestra propuesta emplea toda la información textual existente en los documentos del corpus de trabajo, partiendo de la hipótesis de que la aparición de determinados personajes, eventos, fechas e incluso términos comunes, pueden resultar fundamentales para esta tarea. Para validar nuestra hipótesis, se ha realizado un estudio sobre un corpus de noticias geolocalizadas que tuvieron lugar entre los años 2008 y 2011. Esta distribución temporal nos ha permitido, además, analizar la evolución del rendimiento del clasificador y de los términos más representativos de diferentes localidades a lo largo del tiempo.
Resumo:
This article analyzes the appropriateness of a text summarization system, COMPENDIUM, for generating abstracts of biomedical papers. Two approaches are suggested: an extractive (COMPENDIUM E), which only selects and extracts the most relevant sentences of the documents, and an abstractive-oriented one (COMPENDIUM E–A), thus facing also the challenge of abstractive summarization. This novel strategy combines extractive information, with some pieces of information of the article that have been previously compressed or fused. Specifically, in this article, we want to study: i) whether COMPENDIUM produces good summaries in the biomedical domain; ii) which summarization approach is more suitable; and iii) the opinion of real users towards automatic summaries. Therefore, two types of evaluation were performed: quantitative and qualitative, for evaluating both the information contained in the summaries, as well as the user satisfaction. Results show that extractive and abstractive-oriented summaries perform similarly as far as the information they contain, so both approaches are able to keep the relevant information of the source documents, but the latter is more appropriate from a human perspective, when a user satisfaction assessment is carried out. This also confirms the suitability of our suggested approach for generating summaries following an abstractive-oriented paradigm.
Resumo:
La gran cantidad de información disponible en Internet está dificultando cada vez más que los usuarios puedan digerir toda esa información, siendo actualmente casi impensable sin la ayuda de herramientas basadas en las Tecnologías del Lenguaje Humano (TLH), como pueden ser los recuperadores de información o resumidores automáticos. El interés de este proyecto emergente (y por tanto, su objetivo principal) viene motivado precisamente por la necesidad de definir y crear un marco tecnológico basado en TLH, capaz de procesar y anotar semánticamente la información, así como permitir la generación de información de forma automática, flexibilizando el tipo de información a presentar y adaptándola a las necesidades de los usuarios. En este artículo se proporciona una visión general de este proyecto, centrándonos en la arquitectura propuesta y el estado actual del mismo.
Resumo:
This paper presents a preliminary study in which Machine Learning experiments applied to Opinion Mining in blogs have been carried out. We created and annotated a blog corpus in Spanish using EmotiBlog. We evaluated the utility of the features labelled firstly carrying out experiments with combinations of them and secondly using the feature selection techniques, we also deal with several problems, such as the noisy character of the input texts, the small size of the training set, the granularity of the annotation scheme and the language object of our study, Spanish, with less resource than English. We obtained promising results considering that it is a preliminary study.
Resumo:
Los sistemas de búsqueda de respuestas (BR) se pueden considerar como potenciales sucesores de los buscadores tradicionales de información en la Web. Para que sean precisos deben adaptarse a dominios concretos mediante el uso de recursos semánticos adecuados. La adaptación no es una tarea trivial, ya que deben integrarse e incorporarse a sistemas de BR existentes varios recursos heterogéneos relacionados con un dominio restringido. Se presenta la herramienta Maraqa, cuya novedad radica en el uso de técnicas de ingeniería del software, como el desarrollo dirigido por modelos, para automatizar dicho proceso de adaptación a dominios restringidos. Se ha evaluado Maraqa mediante una serie de experimentos (sobre el dominio agrícola) que demuestran su viabilidad, mejorando en un 29,5% la precisión del sistema adaptado.
Resumo:
The main goal of this paper is to present the initial version of a Textile Chemical Ontology, to be used by textile professionals with the purpose of conceptualising and representing the banned and harmful chemical substances that are forbidden in this domain. After analysing different methodologies and determining that “Methontology” is the most appropriate for the purposes, this methodology is explored and applied to the domain. In this manner, an initial set of concepts are defined, together with their hierarchy and the relationships between them. This paper shows the benefits of using the ontology through a real use case in the context of Information Retrieval. The potentiality of the proposed ontology in this preliminary evaluation encourages extending the ontology with a higher number of concepts and relationships, and validating it within other Natural Language Processing applications.
Resumo:
Currently there are an overwhelming number of scientific publications in Life Sciences, especially in Genetics and Biotechnology. This huge amount of information is structured in corporate Data Warehouses (DW) or in Biological Databases (e.g. UniProt, RCSB Protein Data Bank, CEREALAB or GenBank), whose main drawback is its cost of updating that makes it obsolete easily. However, these Databases are the main tool for enterprises when they want to update their internal information, for example when a plant breeder enterprise needs to enrich its genetic information (internal structured Database) with recently discovered genes related to specific phenotypic traits (external unstructured data) in order to choose the desired parentals for breeding programs. In this paper, we propose to complement the internal information with external data from the Web using Question Answering (QA) techniques. We go a step further by providing a complete framework for integrating unstructured and structured information by combining traditional Databases and DW architectures with QA systems. The great advantage of our framework is that decision makers can compare instantaneously internal data with external data from competitors, thereby allowing taking quick strategic decisions based on richer data.
Resumo:
El proyecto ATTOS centra su actividad en el estudio y desarrollo de técnicas de análisis de opiniones, enfocado a proporcionar toda la información necesaria para que una empresa o una institución pueda tomar decisiones estratégicas en función a la imagen que la sociedad tiene sobre esa empresa, producto o servicio. El objetivo último del proyecto es la interpretación automática de estas opiniones, posibilitando así su posterior explotación. Para ello se estudian parámetros tales como la intensidad de la opinión, ubicación geográfica y perfil de usuario, entre otros factores, para facilitar la toma de decisiones. El objetivo general del proyecto se centra en el estudio, desarrollo y experimentación de técnicas, recursos y sistemas basados en Tecnologías del Lenguaje Humano (TLH), para conformar una plataforma de monitorización de la Web 2.0 que genere información sobre tendencias de opinión relacionadas con un tema.
Resumo:
Este artículo presenta la aplicación y resultados obtenidos de la investigación en técnicas de procesamiento de lenguaje natural y tecnología semántica en Brand Rain y Anpro21. Se exponen todos los proyectos relacionados con las temáticas antes mencionadas y se presenta la aplicación y ventajas de la transferencia de la investigación y nuevas tecnologías desarrolladas a la herramienta de monitorización y cálculo de reputación Brand Rain.
Resumo:
Tema 2. Un nuevo enfoque: la literatura desde lejos.
Resumo:
Tema 6. Text Mining con Topic Modeling.
Resumo:
En este artículo se presenta un método para recomendar artículos científicos teniendo en cuenta su grado de generalidad o especificidad. Este enfoque se basa en la idea de que personas menos expertas en un tema preferirían leer artículos más generales para introducirse en el mismo, mientras que personas más expertas preferirían artículos más específicos. Frente a otras técnicas de recomendación que se centran en el análisis de perfiles de usuario, nuestra propuesta se basa puramente en el análisis del contenido. Presentamos dos aproximaciones para recomendar artículos basados en el modelado de tópicos (Topic Modelling). El primero de ellos se basa en la divergencia de tópicos que se dan en los documentos, mientras que el segundo se basa en la similitud que se dan entre estos tópicos. Con ambas medidas se consiguió determinar lo general o específico de un artículo para su recomendación, superando en ambos casos a un sistema de recuperación de información tradicional.