35 resultados para PLATINUM-ELECTRODES
Resumo:
Controlled nanozeolite deposits are prepared by electrochemical techniques on a macroporous carbon support and binderless thin film electrodes of zeolite-templated carbon are synthesized using the deposits as templates. The obtained film electrodes exhibit extremely high area capacitance (10–12 mF cm−2) and ultrahigh rate capability in a thin film capacitor.
Resumo:
Platinum nanoparticles supported on titania efficiently catalyzed the diboration of alkynes and alkenes under solvent- and ligand-free conditions in air. The cis-1,2-diborylalkenes and 1,2-diborylalkanes were obtained in moderate to excellent yields following, in most cases, a simple filtration workup protocol. The versatility of the cis-1,2-diboronvinyl compounds was demonstrated in a series of organic transformations, including the Suzuki–Miyaura cross coupling and the boron–halogen exchange.
Resumo:
Experiments have been carried out in sulfuric and perchloric acid solutions on Pt(S)[n(110) × (100)] electrodes. The comparison between the two different electrolytic media reveals an important influence of the anion in the voltammetric features. Total charge curves have been obtained with the CO charge displacement method in combination with voltammetric measurements. From these curves, the dependence of the pztc with the step density and the strength of the anion adsorption have been analyzed. The problem of the so-called third peak is treated for a series of electrodes that contain (110) terraces, revealing the requirement of (110) domains for occurrence of this adsorption state.
Resumo:
The electroreduction of nitrate on Pt(1 0 0) electrodes in phosphate buffer neutral solution, pH 7.2, is reported. The sensitivity of the reaction to the crystallographic order of the surface is studied through the controlled introduction of defects by using stepped surfaces with (1 0 0) terraces of different length separated by monoatomic steps, either with (1 1 1) or (1 1 0) symmetry. The results of this study show that nitrate reduction occurs mainly on the well defined (1 0 0) terraces in the potential region where H adsorption starts to decrease, allowing the nitrate anion to access the surface. Adsorbed NO has been detected as a stable intermediate in this media. An oxidation process observed at 0.8 V has been identified as leading to the formation of adsorbed NO and being responsible for a secondary reduction process observed in the subsequent negative scan. Using in situ FTIRS, ammonium was found to be the main product of nitrate reduction. This species can be oxidized at high potentials resulting in adsorbed NO and nitrate (probably with nitrite as intermediate).
Resumo:
Dopamine is the biological molecule responsible, among other functions, of the heart beat and blood pressure regulation. Its loss, in the human body, can result in serious diseases such as Parkinson's, schizophrenia or depression. Structurally, this molecule belongs to the group of catecholamines, together with epinephrine (adrenaline) and norepinephrine (noradrenaline). The hydroquinone moiety of the molecule can be easily oxidized to quinone, rendering the electrochemical methods a convenient approach for the development of dopamine biosensors. The reactivity of similar aromatic molecules, such as catechol and hydroquinone, at well-ordered platinum surfaces, has recently been investigated in our group. In this paper, we extend these studies to the structurally related molecule dopamine. The study has been performed in neutral pH, since this is closer to the natural conditions for these molecules in biological media. Cyclic voltammetry and in situ infra-red spectroscopy have been combined to extract information about the behavior of this molecule on well-defined platinum surfaces. Dopamine appears to be electrochemically active and reveals interesting adsorption phenomena at low potentials (0.15–0.25 V vs RHE), sensitive to the single crystal orientation. The adsorption of dopamine on these surfaces is very strong, taking place at much lower potentials than the electron transfer from solution species. Specifically, the voltammetry of Pt(1 1 1) and Pt(1 0 0) in dopamine solutions shows an oxidation peak at potentials close to the onset of hydrogen evolution, which is related to the desorption of hydrogen and the adsorption of dopamine. On the other hand, adsorption on Pt(1 1 0) is irreversible and the surface appears totally blocked. Spectroscopic results indicate that dopamine is adsorbed flat on the surface. At potentials higher than 0.6 V vs RHE the three basal planes show a common redox process. The initial formation of the quinone moiety is followed by a chemical step resulting in the formation of 5,6-dihydroxyindoline quinone as final product. This oxidation process has also been investigated by vibrational spectroscopy.
Resumo:
The electrochemical reactivity of catechol-derived adlayers is reported at platinum (Pt) single-crystal electrodes. Pt(111) and stepped vicinal surfaces are used as model surfaces possessing well-ordered nanometer-sized Pt(111) terraces ranging from 0.4 to 12 nm. The electrochemical experiments were designed to probe how the control of monatomic step-density and of atomic-level step structure can be used to modulate molecule–molecule interactions during self-assembly of aromatic-derived organic monolayers at metallic single-crystal electrode surfaces. A hard sphere model of surfaces and a simplified band formation model are used as a theoretical framework for interpretation of experimental results. The experimental results reveal (i) that supramolecular electrochemical effects may be confined, propagated, or modulated by the choice of atomic level crystallographic features (i.e.monatomic steps), deliberately introduced at metallic substrate surfaces, suggesting (ii) that substrate-defect engineering may be used to tune the macroscopic electronic properties of aromatic molecular adlayers and of smaller molecular aggregates.
Resumo:
Supported metals are traditionally prepared by impregnating a support material with the metal precursor solution, followed by reduction in hydrogen at elevated temperatures. In this study, a polymeric support has been considered. Polypyrrole (PPy) has been chemically synthesized using FeCl3 as a doping agent, and it has been impregnated with a H2PtCl6 solution to prepare a catalyst precursor. The restricted thermal stability of polypyrrole does not allow using the traditional reduction in hydrogen at elevated temperature, and chemical reduction under mild conditions using sodium borohydride implies environmental concerns. Therefore, cold RF plasma has been considered an environmentally friendly alternative. Ar plasma leads to a more effective reduction of platinum ions in the chloroplatinic complex anchored onto the polypyrrole chain after impregnation than reduction with sodium borohydride, as has been evidenced by XPS. The increase of RF power enhanced the effectiveness of the Ar plasma treatment. A homogeneous distribution of platinum nanoparticles has been observed by TEM after the reduction treatment with plasma. The Pt/polypyrrol catalyst reduced by Ar plasma at 200 watts effectively catalyzed the aqueous reduction of nitrates with H2 to yield N2, with a very low selectivity to undesired nitrites and ammonium by-products.
Electrospinning of silica sub-microtubes mats with platinum nanoparticles for NO catalytic reduction
Resumo:
Silica sub-microtubes loaded with platinum nanoparticles have been prepared in flexible non-woven mats using co-axial electrospinning technique. A partially gelated sol made from tetraethyl orthosilicate was used as the silica precursor, and oil was used as the sacrificial template for the hollow channel generation. Platinum has been supported on the wall of the tubes just adding the metallic precursor to the sol–gel, thus obtaining the supported catalyst by one-pot method. The silica tubes have a high aspect ratio with external/internal diameters of 400/200 nm and well-dispersed platinum nanoparticles of around 2 nm. This catalyst showed a high NO conversion with very high selectivity to N2 at mild conditions in the presence of excess oxygen when using C3H6 as reducing agent. This relevant result reveals the potential of this technique to produce nanostructured catalysts onto easy to handle conformations.
Resumo:
In the present work, the electrochemical properties of single-walled carbon nanotube buckypapers (BPs) were examined in terms of carbon nanotubes nature and preparation conditions. The performance of the different free-standing single wall carbon nanotube sheets was evaluated via cyclic voltammetry of several redox probes in aqueous electrolyte. Significant differences are observed in the electron transfer kinetics of the buckypaper-modified electrodes for both the outer- and inner-sphere redox systems. These differences can be ascribed to the nature of the carbon nanotubes (nanotube diameter, chirality and aspect ratio), surface oxidation degree and type of functionalities. In the case of dopamine, ferrocene/ferrocenium, and quinone/hydroquinone redox systems the voltammetric response should be thought as a complex contribution of different tips and sidewall domains which act as mediators for the electron transfer between the adsorbate species and the molecules in solution. In the other redox systems only nanotube ends are active sites for the electron transfer. It is also interesting to point out that a higher electroactive surface area not always lead to an improvement in the electron transfer rate of various redox systems. In addition, the current densities produced by the redox reactions studied here are high enough to ensure a proper electrochemical signal, which enables the use of BPs in sensing devices.
Resumo:
In this study, we examine the performance of Cu2O and Cu2O/ZnO surfaces in a filter-press electrochemical cell for the continuous electroreduction of CO2 into methanol. The electrodes are prepared by airbrushing the metal particles onto a porous carbon paper and then are electrochemically characterized by cyclic voltammetry analyses. Particular emphasis is placed on evaluating and comparing the methanol production and Faradaic efficiencies at different loadings of Cu2O particles (0.5, 1 and 1.8 mg cm−2), Cu2O/ZnO weight ratios (1:0.5, 1:1 and 1:2) and electrolyte flow rates (1, 2 and 3 ml min−1 cm−2). The electrodes including ZnO in their catalytic surface were stable after 5 h, in contrast with Cu2O-deposited carbon papers that present strong deactivation with time. The maximum methanol formation rate and Faradaic efficiency for Cu2O/ZnO (1:1)-based electrodes, at an applied potential of −1.3 V vs. Ag/AgCl, were r = 3.17 × 10−5 mol m−2 s−1 and FE = 17.7 %, respectively. Consequently, the use of Cu2O–ZnO mixtures may be of application for the continuous electrochemical formation of methanol, although further research is still required in order to develop highly active, selective and stable catalysts the electroreduction of CO2 to methanol.
Resumo:
The interfacial properties of Pt(111) single crystal electrodes have been investigated in the pH range 3 < pH < 5 in order to obtain information about the acidity of electrosorbed water. Proper experimental conditions are defined to avoid local pH changes while maintaining the absence of specifically adsorbed anions and preserving the cleanliness of the solution. For this purpose, buffer solutions resulting from mixtures of NaF and HClO4 are used. Total charge curves are obtained at different pHs from the integration of the voltammetric currents in combination with CO charge displacement experiments. Analysis of the composition of the interphase as a function of the pH provides information for the understanding of the notion of interfacial pH.
Resumo:
The electro-oxidation of carbon materials enormously degrades their performance and limits their wider utilization in multiple electrochemical applications. In this work, the positive influence of phosphorus functionalities on the overall electrochemical stability of carbon materials has been demonstrated under different conditions. We show that the extent and selectivity of electroxidation in P-containing carbons are completely different to those observed in conventional carbons without P. The electro-oxidation of P-containing carbons involves the active participation of phosphorus surface groups, which are gradually transformed at high potentials from less-to more-oxidized species to slow down the introduction of oxygen groups on the carbon surface (oxidation) and the subsequent generation of (C*OOH)-like unstable promoters of electro-gasification. The highest-oxidized P groups (–C–O–P-like species) seem to distribute the gained oxygen to neighboring carbon sites, which finally suffer oxidation and/or gasification. So it is thought that P-groups could act as mediators of carbon oxidation although including various steps and intermediates compared to electroxidation in P-free materials.
Resumo:
The electrochemical reactions of dopamine, catechol and methylcatechol were investigated at tetrahedral amorphous carbon (ta-C) thin film electrodes. In order to better understand the reaction mechanisms of these molecules, cyclic voltammetry with varying scan rates was carried out at different pH values in H2SO4 and PBS solutions. The results were compared to the same redox reactions taking place at glassy carbon (GC) electrodes. All three catechols exhibited quasi-reversible behavior with sluggish electron transfer kinetics at the ta-C electrode. At neutral and alkaline pH, rapid coupled homogeneous reactions followed the oxidation of the catechols to the corresponding o-quinones and led to significant deterioration of the electrode response. At acidic pH, the extent of deterioration was considerably lower. All the redox reactions showed significantly faster electron transfer kinetics at the GC electrode and it was less susceptible toward surface passivation. An EC mechanism was observed for the oxidation of dopamine at both ta-C and GC electrodes and the formation of polydopamine was suspected to cause the passivation of the electrodes.
Resumo:
The development of electrochemical processes for the conversion of CO2 into value-added products allows innovative carbon capture & utilization (CCU) instead of carbon capture & storage (CCS). In addition, coupling this conversion with renewable energy sources would make it possible to chemically store electricity from these intermittent renewable sources. The electroreduction of CO2 to formate in aqueous solution has been performed using Sn particles deposited over a carbon support. The effect of the particle size and Sn metal loading has been evaluated using cyclic voltammetry and chronoamperometry. The selected electrode has been tested on an experimental filter-press type cell system for continuous and single pass CO2 electroreduction to obtain formate as main product at ambient pressure and temperature. Experimental results show that using electrodes with 0.75 mg Sn cm−2, 150 nm Sn particles, and working at a current density of 90 mA cm−2, it is possible to achieve rates of formate production over 3.2 mmol m−2 s−1 and faradaic efficiencies around 70% for 90 min of continuous operation. These experimental conditions allow formate concentrations of about 1.5 g L−1 to be obtained on a continuous mode and with a single pass of catholyte through the cell.
Resumo:
The determination of the potentials of zero total and free charge, pztc and pzfc respectively, were made in a wide pH range by using the CO displacement method and the same calculation assumptions used previously for Pt(1 1 1) electrodes in contact with non-specifically adsorbing anions. Calculation of the pzfc involves, in occasions, long extrapolations that lead us to the introduction of the concept of potential of zero extrapolated charge (pzec). It was observed that the pztc changes with pH but the pzec is independent of this parameter. It was observed that the pztc > pzec at pH > 3.4 but the opposite is true for pH > 3.4. At the latter pH both pzec and pztc coincide. This defines two different pH regions and means that adsorbed hydrogen has to be corrected in the “acidic” solutions at the pztc while adsorbed OH is the species to be corrected in the “alkaline” range. The comparison of the overall picture suggests that neutral conditions at the interface are attained at significantly acidic solutions than those at the bulk.