42 resultados para NICKEL-PHOSPHIDE CATALYSTS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glutaraldehyde is one of the most widely used reagents in the design of biocatalysts. It is a powerful crosslinker, able to react with itself, with the advantages that this may bring forth. In this review, we intend to give a general vision of its potential and the precautions that must be taken when using this effective reagent. First, the chemistry of the glutaraldehyde/amino reaction will be commented upon. This reaction is still not fully clarified, but it seems to be based on the formation of 6-membered heterocycles formed by 5 C and one O. Then, we will discuss the production of intra- and inter-molecular enzyme crosslinks (increasing enzyme rigidity or preventing subunit dissociation in multimeric enzymes). Special emphasis will be placed on the preparation of cross-linked enzyme aggregates (CLEAs), mainly in enzymes that have low density of surface reactive groups and, therefore, may be problematic to obtain a final solid catalyst. Next, we will comment on the uses of glutaraldehyde in enzymes previously immobilized on supports. First, the treatment of enzymes immobilized on supports that cannot react with glutaraldehyde (only inter and intramolecular cross-linkings will be possible) to prevent enzyme leakage and obtain some enzyme stabilization via cross-linking. Second, the cross-linking of enzymes adsorbed on aminated supports, where together with other reactions enzyme/support crosslinking is also possible; the enzyme is incorporated into the support. Finally, we will present the use of aminated supports preactivated with glutaraldehyde. Optimal glutaraldehyde modifications will be discussed in each specific case (one or two glutaraldehyde molecules for amino group in the support and/or the protein). Using preactivated supports, the heterofunctional nature of the supports will be highlighted, with the drawbacks and advantages that the heterofunctionality may have. Particular attention will be paid to the control of the first event that causes the immobilization depending on the experimental conditions to alter the enzyme orientation regarding the support surface. Thus, glutaraldehyde, an apparently old fashioned reactive, remains the most widely used and with broadest application possibilities among the compounds used for the design of biocatalyst.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

l-Prolinol-based ligands anchored to Merrifield or Wang-type resins have been shown to form efficient catalysts for the enantioselective addition of dialkylzinc reagents to N-(diphenylphosphinyl)imines. The enantioselectivity achieved with the polymeric catalyst (ee up to 88%) is slightly lower than the one obtained with the homogeneous ligand N-benzyl-l-prolinol, but the polymer-supported ligand presents the advantage of its recyclability: it can be recovered and used in up to six consecutive catalytic cycles with only a slight decrease in the enantiomeric excess. The phosphinamides obtained as addition products can be transformed into the corresponding enantiomerically enriched α-branched primary amines under mild acidic conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of synthetic routes for the tailoring of efficient silica-based heterogeneous catalysts functionalized with coordination complexes or metallic nanoparticles has become a important goal in chemistry. Most of these techniques have been based on postsynthetic treatments of preformed silicas. Nevertheless, there is an emerging approach, so-called sol–gel coordination chemistry, based on co-condensation during the sol–gel preparation of the hybrid material of the corresponding complex or nanoparticle modified with terminal trialkoxysilane groups with a silica source (such as tetraethoxysilane) and in the presence of an adequate surfactant. This method leads to the production of new mesoporous metal complex-silica materials, with the metallic functionality incorporated homogeneously into the structure of the hybrid material, improving the stability of the coordination complex (which is protected by the silica network) and reducing the leaching of the active phase. This technique also offers the actual possibility of functionalizing silica or other metal oxides for a wider range of applications, such as photonics, sensing, and biochemical functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two microporous hectorites were prepared by conventional and microwave heating, and a delaminated mesoporous hectorite by an ultrasound-assisted synthesis. These three hectorites were impregnated with copper. The characterization techniques used were XRD, N2 adsorption, TEM and H2 reduction after selective surface copper oxidation by N2O (to determine copper dispersion). The catalytic activity for soot combustion of the copper-free and the copper-containing hectorites was tested under a gas mixture of 500 ppm NOx/5% O2/N2 (and 5% O2/N2 in some cases), evaluating their stability through three consecutive soot combustion experiments. The delaminated hectorite showed the highest surface area (353 m2/g) allowing the highest dispersion of copper. This copper-containing catalyst was the most active for soot combustion among those prepared and tested in this study. We have also concluded that the Cu/hectorite-catalyzed soot combustion mechanism is based on the activation of the O2 molecule and not on the NO2-assisted soot combustion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low metal content Co and Ni alumina supported catalysts (4.0, 2.5 and 1.0 wt% nominal metal content) have been prepared, characterized (by ICP-OES, TEM, TPR-H2 and TPO) and tested for the CO2 reforming of methane. The objective is to optimize the metal loading in order to have a more efficient system. The selected reaction temperature is 973 K, although some tests at higher reaction temperature have been also performed. The results show that the amount of deposited carbon is noticeably lower than that obtained with the Co and Ni reference catalysts (9 wt%), but the CH4 and CO2 conversions are also lower. Among the catalysts tested, the Co(1) catalyst (the value in brackets corresponds to the nominal wt% loading) is deactivated during the first minutes of reaction because CoAl2O4 is formed, while Ni(1) and Co(2.5) catalysts show a high specific activity for methane conversion, a high stability and a very low carbon deposition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Environmentally friendly sulfonated black carbon (BC) catalysts were prepared from biodiesel waste, glycerol. These black carbons (BCs) contain a high amount of acidic groups, mainly sulfonated and oxygenated groups. Furthermore, these catalysts show a high catalytic activity in the glycerol etherification reaction with tert-butyl alcohol, the activity being larger for the sample prepared with a higher glycerol:sulfuric acid ratio (1:3). The yield for mono-tert-butyl glycerol (MTBG), di-tert-butyl glycerol (DTBG) and tri-tert-butyl-glycerol (TTBG) were very similar to those obtained using a commercial resin, Amberlyst-15. Furthermore, experimental results show that the carbon with the lowest acidic surface group content, BC prepared in minor glycerol:sulfuric acid ratio (10:1), can be chemically treated after carbonization to achieve an improved catalytic activity. The activity of all BCs is high and very similar, about 50% and 20% for the MTBG and DTBG + TTBG, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of CeO2–Nb2O5 mixed oxides with different Nb content, as well as the pure oxides, have been synthesized by co-precipitation with excess urea. These materials have been used as supports for platinum catalysts, with [Pt(NH3)4](NO3)2 as precursor. Both supports and catalysts have been characterized by several techniques: N2 physisorption at 77 K, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, UV–vis spectroscopy, scanning electron microscopy, transmission electron microscopy, temperature-programmed reduction and temperature-programmed desorption (CO and H2), and their catalytic behaviour has been determined in the PROX reaction, both with an ideal gas mixture (CO, O2 and H2) and in simulated reformate gas containing CO2 and H2O. Raman spectroscopy analysis has shown the likely substitution of some Ce4+ cations by Nb5+ to some extent in supports with low niobium contents. Moreover, the presence of Nb in the supports hinders their ability to adsorb CO and to oxidize it to CO2. However, an improvement of the catalytic activity for CO oxidation is obtained by adding Nb to the support, although the Pt/Nb2O5 catalyst shows very low activity. The best results are found with the Pt/0.7CeO2–0.3Nb2O5 catalyst, which shows a high CO conversion (85%) and a high yield (around 0.6) after a reduction treatment at 523 K. The effect of the presence of CO2 and H2O in the feed has also been determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ramón's group has designed a simple, robust and inexpensive methodology for the impregnation of different transition metal oxides on the surface of magnetite and their use in catalysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the WGS performance of a conventional Ni/CeO2 bulk catalyst is compared to that of a carbon-supported Ni-CeO2 catalyst. The carbon-supported sample resulted to be much more active than the bulk one. The higher activity of the Ni-CeO2/C catalyst is associated to its oxygen storage capacity, a parameter that strongly influences the WGS behavior. The stability of the carbon-supported catalyst under realistic operation conditions is also a subject of this paper. In summary, our study represents an approach towards a new generation of Ni-ceria based catalyst for the pure hydrogen production via WGS. The dispersion of ceria nanoparticles on an activated carbon support drives to improved catalytic skills with a considerable reduction of the amount of ceria in the catalyst formulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herein, the preferential oxidation of CO in excess hydrogen (PROX reaction) was studied over Au catalysts supported on ceria and Y or Nb doped ceria. Both supports and catalysts have been extensively characterized by a number of advanced techniques; XRD, N2-adsortion, Raman spectroscopy, XPS, and H2-TPR. The catalytic results showed that when an ideal mixture of H2 and CO is used for the PROX reaction the gold supported on pure ceria behaves better than the others samples. However, when a typical reformate gas composition containing CO2 and H2O is used, the gold supported on Nb doped sample behaves better than gold supported in pure ceria. It is suggested that niobium hampers the strong adsorption of CO2 and H2O in the active sites, thus improving the catalytic performance in real reformate gas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalysts consisting of cobalt and nickel impregnated on magnetite have been prepared, characterized and used for the hydroacylation reaction of different azodicarboxylate compounds with aldehydes, using nearly stoichiometric amounts of both reagents in only 3 h. Furthermore, this reaction has been conducted with the smallest amount of catalyst. The cobalt catalyst is stable enough to be removed by magnetic decantation and recycled ten-fold without any detrimental effect on the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CeO2-, ZrO2-, and La2O3-supported Rh-Pt catalysts were tested to assess their ability to catalyze the steam reforming of ethanol (SRE) for H2 production. SRE activity tests were performed using EtOH:H2O:N2 (molar ratio 1:3:51) at a gaseous space velocity of 70,600 h−1 between 400 and 700 °C at atmospheric pressure. The SRE stability of the catalysts was tested at 700 °C for 27 h time on stream under the same conditions. RhPt/CeO2, which showed the best performance in the stability test, also produced the highest H2 yield above 600 °C, followed by RhPt/La2O3 and RhPt/ZrO2. The fresh and aged catalysts were characterized by TEM, XPS, and TGA. The higher H2 selectivity of RhPt/CeO2 was ascribed to the formation of small (~5 nm) and stable particles probably consistent of Rh-Pt alloys with a Pt surface enrichment. Both metals were oxidized and acted as an almost constant active phase during the stability test owing to strong metal-support interactions, as well as the superior oxygen mobility of the support. The TGA results confirmed the absence of carbonaceous residues in all the aged catalysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The selective hydrogenation of 2-methyl-3-butyn-2-ol (MBY) was performed in the presence of Lindlar catalyst, comparing conventional stirring with sonication at different frequencies of 40, 380 and 850 kHz. Under conventional stirring, the reaction rates were limited by intrinsic kinetics, while in the case of sonication, the reaction rates were 50–90% slower. However, the apparent reaction rates were found to be significantly frequency dependent with the highest rate observed at 40 kHz. The original and the recovered catalysts after the hydrogenation reaction were compared using bulk elemental analysis, powder X-ray diffraction and scanning and transmission electron microscopy coupled with energy-dispersive X-ray analysis. The studies showed that sonication led to the frequency-dependent fracturing of polycrystalline support particles with the highest impact caused by 40 kHz sonication, while monocrystals were undamaged. In contrast, the leaching of Pd/Pb particles did not depend on the frequency, which suggests that sonication removed only loosely-bound catalyst particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

H– and Na–saponite supports have been prepared by several synthesis approaches. 5% Cu/saponite catalysts have been prepared and tested for soot combustion in a NOx + O2 + N2 gas flow and with soot and catalyst mixed in loose contact mode. XRD, FT-IR, N2 adsorption and TEM characterization results revealed that the use of either surfactant or microwaves during the synthesis led to delamination of the saponite support, yielding high surface area and small crystallite size materials. The degree of delamination affected further copper oxide dispersion and soot combustion capacity of the Cu/saponite catalysts. All Cu/saponite catalysts were active for soot combustion, and the NO2-assisted mechanism seemed to prevail. The best activity was achieved with copper oxide supported on a Na–saponite prepared at pH 13 and with surfactant. This best activity was attributed to the efficient copper oxide dispersion on the high surface area delaminated saponite (603 m2 g−1) and to the presence of Na. Copper oxide reduction in H2-TPR experiments occurred at lower temperature for the Na-containing catalysts than for the H-containing counterparts, and all Cu/Na–saponite catalysts were more active for soot combustion than the corresponding Cu/H–saponite catalysts.