18 resultados para Concrete houses
Resumo:
Mercury intrusion porosimetry (MIP) has been widely used to evaluate the quality of concrete through the pore size distribution parameters. Two of these parameters are the critical pore diameter (Dcrit) and the percentage of the most interconnected net of pores compared to the total volume of pores. Some researchers consider Dcrit as the diameter obtained from the inflexion point of the cumulative mercury intrusion curve while others consider Dcrit as the diameter obtained from the point of abrupt variation in the same curve. This study aims to analyze two groups of concretes of varying w/c ratios, one cast with pozzolanic cement and another with high initial strength cement, in order to determine which of these diameters feature a better correlation with the quality parameters of the concretes. The concrete quality parameters used for the evaluations were (1) the w/c ratios and (2) chloride diffusion coefficients measured at approximately 90 days. MIP cumulative distributions of the same concretes were also measured at about 90 days, and Dcrit values were determined (1) from the point of abrupt variation and alternatively, (2) from the inflexion point of each of these plots. It was found that Dcrit values measured from the point of abrupt variation were useful indicators of the quality of the concrete, but the Dcrit values based on the inflexion points were not. Hence, it is recommended that Dcrit and the percentage of the most interconnected volume of pores should be obtained considering the point of abrupt variation of the cumulative curve of pore size distribution.
Resumo:
This paper aims to study the feasibility of highly conductive carbon fiber reinforced concrete (CFRC) as a self-heating material for ice formation prevention and curing in pavements. Tests were carried out in lab ambient conditions at different fixed voltages and then introduced in a freezer at −15 °C. The specimens inside the freezer were exposed to different fixed voltages when reaching +5 °C for prevention of icing and when reaching the temperature inside the freezer, i.e., −15 °C, for curing of icing. Results show that this concrete could act as a heating element in pavements with risk of ice formation, consuming a reasonable amount of energy for both anti-icing (prevention) and deicing (curing), which could turn into an environmentally friendly and cost-effective deicing method.
Resumo:
Concern for the environment has lately heightened awareness about the need for recycling in the construction industry. However, some standards, such as the Spanish standard, only accept the recycling of aggregates derived from concrete, which limits the extensive use of construction and demolition waste, which are produced in much bigger volumes. The aim of this work was to explore the possibility of using recycled mixed aggregates (RMA) in the preparation of precast non-structural concretes. To that end different percentages of natural aggregate were replaced by RMA in non-structural elements (25, 50, 75 and 100%). Contents of cement, water, and the dosages commonly used by companies were unchanged by the introduction of RMA. The characterization of the prepared elements has been done using the specific tests for each type of non-structural element (terrazzo for indoor use, hollow tiles, kerbstones and paving blocks): compression and flexural strength, water absorption, dimensional tolerances, abrasion and slipping resistance. The paving blocks, kerbstones, and hollow tiles prepared were tested for 360 days. The stability of the tested properties confirmed the possibility of using these wastes on an industrial scale satisfying the standard requirements. However, the surface of terrazzo with RMA is not as good as that prepared with natural aggregate.