72 resultados para Activated carbon structure


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show here that a physical activation process that is diffusion-controlled yields an activated carbon whose chemistry – both elemental and functional – varies radially through the particles. For the ∼100 μm particles considered here, diffusion-controlled activation in CO2 at 800 °C saw a halving in the oxygen concentration from the particle periphery to its center. It was also observed that this activation process leads to an increase in keto and quinone groups from the particle periphery towards the center and the inverse for other carbonyls as well as ether and hydroxyl groups, suggesting the two are formed under CO2-poor and -rich environments, respectively. In contrast to these observations, use of physical activation processes where diffusion-control is absent are shown to yield carbons whose chemistry is radially invariant. This suggests that a non-diffusion limited activation processes should be used if the performance of a carbon is dependent on having a specific optimal pore surface chemical composition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon monoliths with high densities are studied as adsorbents for the storage of H2, CH4, and CO2 at ambient temperature and high pressures. The starting monolith A3 (produced by ATMI Co.) was activated under a CO2 flow at 1073 K, applying different activation times up to 48 h. Micropore volumes and apparent surface areas were deduced from N2 and CO2 adsorption isotherms at 77 K and 273 K, respectively. CO2 and CH4 isotherms were measured up to 3 MPa and H2 up to 20 MPa. The BET surface area of the starting monolith (941 m2/g) could be significantly increased up to 1586 m2/g, and the developed porosity is almost exclusively comprised of micropores <1 nm. Total storage amounts take into account the compressed gas in the void space of the material, in addition to the adsorbed gas. Remarkably, high total storage amounts are reached for CO2 (482 g/L), CH4 (123 g/L), and H2 (18 g/L). These values are much higher than for other sorbents with similar surface areas, due to the high density of the starting monolith and of the activated ones, for which the density decreases only slightly (from 1.0 g/cm3 to 0.8 g /cm3 upon CO2 activation). The findings reveal the suitability of high density activated carbon monoliths for gas storage application. Thus, the amounts of stored gas can be increased by more than a 70 % in the case of H2 at 20 MPa, almost 5.5 times in the case of CH4 at 3 MPa, and more than 7.5 times in the case of CO2 at 3 MPa when adsorbents are used for gas storage under the investigated conditions rather than simple compression. Furthermore, the obtained results have been recently confirmed by a scale-up study in which 2.64 kg of high density monolith adsorbent was filled a tank cylinder of 2.5 L (Carbon, 76, 2014, 123).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The remediation of paracetamol (PA), an emerging contaminant frequently found in wastewater treatment plants, has been studied in the low concentration range (0.3–10 mg L−1) using as adsorbent a biomass-derived activated carbon. PA uptake of up to 100 mg g−1 over the activated carbon has been obtained, with the adsorption isotherms being fairly explained by the Langmuir model. The application of Reichemberg and the Vermeulen equations to the batch kinetics experiments allowed estimating homogeneous and heterogeneous diffusion coefficients, reflecting the dependence of diffusion with the surface coverage of PA. A series of rapid small-scale column tests were carried out to determine the breakthrough curves under different operational conditions (temperature, PA concentration, flow rate, bed length). The suitability of the proposed adsorbent for the remediation of PA in fixed-bed adsorption was proven by the high PA adsorption capacity along with the fast adsorption and the reduced height of the mass transfer zone of the columns. We have demonstrated that, thanks to the use of the heterogeneous diffusion coefficient, the proposed mathematical approach for the numerical solution to the mass balance of the column provides a reliable description of the breakthrough profiles and the design parameters, being much more accurate than models based in the classical linear driving force.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activated carbons prepared from petroleum pitch and using KOH as activating agent exhibit an excellent behavior in CO2 capture both at atmospheric (∼168 mg CO2/g at 298 K) and high pressure (∼1500 mg CO2/g at 298 K and 4.5 MPa). However, an exhaustive evaluation of the adsorption process shows that the optimum carbon structure, in terms of adsorption capacity, depends on the final application. Whereas narrow micropores (pores below 0.6 nm) govern the sorption behavior at 0.1 MPa, large micropores/small mesopores (pores below 2.0–3.0 nm) govern the sorption behavior at high pressure (4.5 MPa). Consequently, an optimum sorbent exhibiting a high working capacity for high pressure applications, e.g., pressure-swing adsorption units, will require a poorly-developed narrow microporous structure together with a highly-developed wide microporous and small mesoporous network. The appropriate design of the preparation conditions gives rise to carbon materials with an extremely high delivery capacity ∼1388 mg CO2/g between 4.5 MPa and 0.1 MPa. Consequently, this study provides guidelines for the design of carbon materials with an improved ability to remove carbon dioxide from the environment at atmospheric and high pressure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the present work we study the hydroxide activation (NaOH and KOH) of phenol-formaldehyde resin derived CNFs prepared by a polymer blend technique to prepare highly porous activated carbon nanofibres (ACNFs). Morphology and textural characteristics of these ACNFs were studied and their hydrogen storage capacities at 77 K (at 0.1 MPa and at high pressures up to 4 MPa) were assessed, and compared, with reported capacities of other porous carbon materials. Phenol-formaldehyde resin derived carbon fibres were successfully activated with these two alkaline hydroxides rendering highly microporous ACNFs with reasonable good activation process yields up to 47 wt.% compared to 7 wt.% yields from steam activation for similar surface areas of 1500 m2/g or higher. These nano-sized activated carbons present interesting H2 storage capacities at 77 K which are comparable, or even higher, to other high quality microporous carbon materials. This observation is due, in part, to their nano-sized diameters allowing to enhance their packing densities to 0.71 g/cm3 and hence their resulting hydrogen storage capacities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The paper provides interesting evidences that a low softening point isotropic petroleum pitch can be used as a good carbon precursor for the preparation of activated carbons. The activation is carried out by KOH and/or NaOH and the resulting activated carbons present well developed porosity. Such hydroxide activations can be done directly on the pristine petroleum pitch (P) or on the pitch that has been submitted to an air stabilisation followed by a N2 heat treatment (TAN). In general, KOH activation produces better results than NaOH, both in terms of porosity and yield, the results obtained for the activation of TAN being impressive because of the good porosity developments and high yields reached. The different treatments carried out over the petroleum pitch precursor clearly show that they significantly influence the extent of microporosity development. This is due to different changes occurring in the porous structure of the precursor as a function of the treatment carried out. The efficiency of the activation process increases as the mesophase content of the precursor decreases, as well as the mesophase formation during the activation process is avoided.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effect of surface chemistry (nature and amount of oxygen groups) in the removal of ammonia was studied using a modified resin-based activated carbon. NH3 breakthrough column experiments show that the modification of the original activated carbon with nitric acid, that is, the incorporation of oxygen surface groups, highly improves the adsorption behavior at room temperature. Apparently, there is a linear relationship between the total adsorption capacity and the amount of the more acidic and less stable oxygen surface groups. Similar experiments using moist air clearly show that the effect of humidity highly depends on the surface chemistry of the carbon used. Moisture highly improves the adsorption behavior for samples with a low concentration of oxygen functionalities, probably due to the preferential adsorption of ammonia via dissolution into water. On the contrary, moisture exhibits a small effect on samples with a rich surface chemistry due to the preferential adsorption pathway via Brønsted and Lewis acid centers from the carbon surface. FTIR analyses of the exhausted oxidized samples confirm both the formation of NH4+ species interacting with the Brønsted acid sites, together with the presence of NH3 species coordinated, through the lone pair electron, to Lewis acid sites on the graphene layers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Alkaline hydroxides, especially sodium and potassium hydroxides, are multi-million-ton per annum commodities and strong chemical bases that have large scale applications. Some of them are related with their consequent ability to degrade most materials, depending on the temperature used. As an example, these chemicals are involved in the manufacture of pulp and paper, textiles, biodiesels, soaps and detergents, acid gases removal (e.g., SO2) and others, as well as in many organic synthesis processes. Sodium and potassium hydroxides are strong and corrosive bases, but they are also very stable chemicals that can melt without decomposition, NaOH at 318ºC, and KOH at 360ºC. Hence, they can react with most materials, even with relatively inert ones such as carbon materials. Thus, at temperatures higher than 360ºC these melted hydroxides easily react with most types of carbon-containing raw materials (coals, lignocellulosic materials, pitches, etc.), as well as with most pure carbon materials (carbon fibers, carbon nanofibers and carbon nanotubes). This reaction occurs via a solid-liquid redox reaction in which both hydroxides (NaOH or KOH) are converted to the following main products: hydrogen, alkaline metals and alkaline carbonates, as a result of the carbon precursor oxidation. By controlling this reaction, and after a suitable washing process, good quality activated carbons (ACs), a classical type of porous materials, can be prepared. Such carbon activation by hydroxides, known since long time ago, continues to be under research due to the unique properties of the resulting activated carbons. They have promising high porosity developments and interesting pore size distributions. These two properties are important for new applications such as gas storage (e.g., natural gas or hydrogen), capture, storage and transport of carbon dioxide, electricity storage demands (EDLC-supercapacitors-) or pollution control. Because these applications require new and superior quality activated carbons, there is no doubt that among the different existing activating processes, the one based on the chemical reaction between the carbon precursor and the alkaline hydroxide (NaOH or KOH) gives the best activation results. The present article covers different aspects of the activation by hydroxides, including the characteristics of the resulting activated carbons and their performance in some environment-related applications. The following topics are discussed: i) variables of the preparation method, such as the nature of the hydroxide, the type of carbon precursor, the hydroxide/carbon precursor ratio, the mixing procedure of carbon precursor and hydroxide (impregnation of the precursor with a hydroxide solution or mixing both, hydroxide and carbon precursor, as solids), or the temperature and time of the reaction are discussed, analyzing their effect on the resulting porosity; ii) analysis of the main reactions occurring during the activation process, iii) comparative analysis of the porosity development obtained from different activation processes (e.g., CO2, steam, phosphoric acid and hydroxides activation); and iv) performance of the prepared activated carbon materials on a few applications, such as VOC removal, electricity and gas storages.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We show, through some examples, that chemical activation by alkaline hydroxides permits the preparation of activated carbons with tailored pore volume, pore size distribution, pore structure and surface chemistry, which are useful for their application as electrodes in supercapacitors. Examples are presented discussing the importance of each of these properties on the double layer capacitance, on the kinetics of the electric double-layer charge-discharge process and on the pseudo-capacitative contribution from the surface functional groups or the addition of a conducting polymer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work, batch and dynamic adsorption tests are coupled for an accurate evaluation of CO2 adsorption performance for three different activated carbons obtained from olives stones by chemical activation followed by physical activation with CO2 at varying times, i.e. 20, 40 and 60 h. Kinetic and thermodynamic CO2 adsorption tests from simulated flue-gas at different temperature and CO2 pressure are carried out both in batch (a manometric equipment operating with pure CO2) and dynamic (a lab-scale fixed-bed column operating with CO2/N2 mixture) conditions. The textural characterization of the activated carbon samples shows a direct dependence of both micropore and ultramicropore volume on the activation time, hence AC60 has the higher contribution. The adsorption tests conducted at 273 and 293 K showed that, when CO2 pressure is lower than 0.3 bar, the lower the activation time the higher CO2 adsorption capacity and a ranking ωeq(AC20)>ωeq(AC40)>ωeq(AC60) can be exactly defined when T= 293 K. This result can be likely ascribed to a narrower pore size distribution of the AC20 sample, whose smaller pores are more effective for CO2 capture at higher temperature and lower CO2 pressure, the latter representing operating conditions of major interest for decarbonation of a flue-gas effluent. Moreover, the experimental results obtained from dynamic tests confirm the results derived from the batch tests in terms of CO2 adsorption capacity. It is important to highlight that the adsorption of N2 on the synthesized AC samples can be considered negligible. Finally, the importance of a proper analysis of characterization data and adsorption experimental results is highlighted for a correct assessment of CO2 removal performances of activated carbons at different CO2 pressure and operating temperature.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper complements a previous one [1] about toluene adsorption on a commercial spherical activated carbon and on samples obtained from it by CO2 or steam activation. The present paper deals with the activation of a commercial spherical carbon (SC) having low porosity and high bed density (0.85 g/cm3) using the same procedure. Our results show that SC can be well activated with CO2 or steam. The increase in the burn-off percentage leads to an increase in the gravimetric adsorption capacity (more intensively for CO2) and a decrease in bed density (more intensively for CO2). However, for similar porosity developments similar bed densities are achieved for CO2 and steam. Especial attention is paid to differences between both activating agents, comparing samples having similar or different activation rates, showing that CO2 generates more narrow porosity and penetrates more inside the spherical particles than steam. Steam activates more from the outside to the interior of the spheres and hence produces larger spheres size reductions. With both activation agents and with a suitable combination of porosity development and bed density, quite high volumetric adsorption values of toluene (up to 236 g toluene/L) can be obtained even using a low toluene concentration (200 ppmv).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A complete study of the importance of the pyrolysis temperature (up to 1500 °C) of a petroleum residue (ethylene tar) in the activation with KOH of the resultant pyrolysis products (covering from the own ethylene tar to pitches and well developed cokes) has been carried out. The trend in the porosity found for activated carbons is as follows: the pore volume increases with the pyrolysis temperature reaching a maximum value (1.39 cm3/g) at about 460 °C, just at the transition temperature between a fluid pitch and a solid coke. It is the pitch with highest mesophase content that develops the maximum porosity when activated with KOH. The amount of H2, CO and CO2 produced during the reaction of the mesophase pitch and coke with KOH has been quantified, and a trend as described for the pore volume was found with the pyrolysis temperature. Therefore, there is a relationship between the reactivity of the precursor with KOH and the porosity developed by the activated carbon. Since the reactions that produce H2 initiate at temperatures as low as 300 °C, it seems that KOH is modifying the conditions under which the pyrolysis occurs, and this fact is critical in the development of porosity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Activated carbons with high metal content have been prepared by the pyrolysis of ethylene tar with dissolved metal acetylacetonates (Ti, V, Fe, Co, Ni and Cu) and subsequent activation with KOH of the pitch obtained in pyrolysis. These metal compounds decompose during the pyrolysis of ethylene tar yielding metal nanoparticles formed by metal and/or oxide which are homogeneously distributed in the pitch and remain in the activated carbon, so that the concentration of metal is, in most cases, 4–5 times higher than in the pristine ethylene tar. Since KOH is an effective activating agent, all activated carbons combine a high porosity development with a high metal content. In some of the carbons, such as P2FeA (3.3% Fe, pore volume 1.84 cm3/g, BET surface area 3270 m2/g), there is even an increase in the pore volume when compared to the activated carbon prepared in the same way without metal, in spite of the fact that the metal increases the weight of carbon without contributing to the adsorptive capacity. It seems that iron, on the one hand modifies the pyrolysis to give a pitch with larger mesophase content and on the other hand it locally catalyzes carbon gasification with the CO2 produced along the synthesis of the carbon. In addition to its influence on activation, iron promotes the formation of graphitic carbon fibers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Acid pretreatment of lignocellulosic biomass, required for bioethanol production, generates large amounts of by-products, such as lignin and hydrolyzed hemicellulose fractions, which have found so far very limited applications. In this work, we demonstrate how the recovered hemicellulose hydrolysis products can be effectively utilized as a precursor for the synthesis of functional carbon materials through hydrothermal carbonization (HTC). The morphology and chemical structure of the synthesized HTC carbons are thoroughly characterized to highlight their similarities with glucose-derived HTC carbons. Furthermore, two routes for introducing porosity within the HTC carbon structure are presented: i) silica nanoparticle hard-templating, which is shown to be a viable method for the synthesis of carbonaceous hollow spheres; and ii) KOH chemical activation. The synthesized activated carbons (ACs) show an extremely high porosity (pore volume≈1.0 cm3 g−1) mostly composed of micropores (90 % of total pore volume). Because of their favorable textural properties, the ACs are further tested as electrodes for supercapacitors, yielding very promising results (300 F g−1 at 250 mA g−1) and confirming the high suitability of KOH-activated HTC carbons derived from spruce and corncob hydrolysis products as materials for electric double layer supercapacitors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

On the basis of laboratory experiments with model mixtures (active carbon + CuBr2 at different loads), this work studies the formation of polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) by de novo synthesis. For the different samples, the temperature of the maximum carbon oxidation rate was determined by thermogravimetric analysis, and a kinetic model was proposed for the degradation of the materials in an oxidizing atmosphere (synthetic air). The effect of the addition of different amounts of CuBr2 was studied, finding that its presence accelerates the degradation of the carbonaceous structure in the presence of oxygen. The thermal degradation of the samples in air is satisfactorily described by a first-order single-reaction model. In addition, combustion runs of one of the mixtures (consisting of activated carbon + 50 wt % CuBr2, pyrolyzed at 700 °C) were performed in a quartz horizontal laboratory furnace. The analysis of the emissions and the solid residue proved the formation of brominated dioxins and furans at 300, 400, and 500 °C, with a maximum yield at 300 °C (91.7 ng/g of total PBDD/Fs) and a higher bromination degree with increasing temperature.