28 resultados para 1079


Relevância:

10.00% 10.00%

Publicador:

Resumo:

By computing spin-polarized electronic transport across a finite zigzag graphene ribbon bridging two metallic graphene electrodes, we demonstrate, as a proof of principle, that devices featuring 100% magnetoresistance can be built entirely out of carbon. In the ground state a short zigzag ribbon is an antiferromagnetic insulator which, when connecting two metallic electrodes, acts as a tunnel barrier that suppresses the conductance. The application of a magnetic field makes the ribbon ferromagnetic and conductive, increasing dramatically the current between electrodes. We predict large magnetoresistance in this system at liquid nitrogen temperature and 10 T or at liquid helium temperature and 300 G.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

I show that recent experiments of inelastic scanning tunneling spectroscopy of single and a few magnetic atoms are modeled with a phenomenological spin-assisted tunneling Hamiltonian so that the inelastic dI/dV line shape is related to the spin spectral weight of the magnetic atom. This accounts for the spin selection rules and dI/dV spectra observed experimentally for single Fe and Mn atoms deposited on Cu2N. In the case of chains of Mn atoms it is found necessary to include both first and second-neighbor exchange interactions as well as single-ion anisotropy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We theoretically show how the spin orientation of a single magnetic adatom can be controlled by spin polarized electrons in a scanning tunneling microscope configuration. The underlying physical mechanism is spin assisted inelastic tunneling. By changing the direction of the applied current, the orientation of the magnetic adatom can be completely reversed on a time scale that ranges from a few nanoseconds to microseconds, depending on bias and temperature. The changes in the adatom magnetization direction are, in turn, reflected in the tunneling conductance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Detection of a single nuclear spin constitutes an outstanding problem in different fields of physics such as quantum computing or magnetic imaging. Here we show that the energy levels of a single nuclear spin can be measured by means of inelastic electron tunneling spectroscopy (IETS). We consider two different systems, a magnetic adatom probed with scanning tunneling microscopy and a single Bi dopant in a silicon nanotransistor. We find that the hyperfine coupling opens new transport channels which can be resolved at experimentally accessible temperatures. Our simulations evince that IETS yields information about the occupations of the nuclear spin states, paving the way towards transport-detected single nuclear spin resonance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Digital magnetic recording is based on the storage of a bit of information in the orientation of a magnetic system with two stable ground states. Here we address two fundamental problems that arise when this is done on a quantized spin: quantum spin tunneling and backaction of the readout process. We show that fundamental differences exist between integer and semi-integer spins when it comes to both reading and recording classical information in a quantized spin. Our findings imply fundamental limits to the miniaturization of magnetic bits and are relevant to recent experiments where a spin-polarized scanning tunneling microscope reads and records a classical bit in the spin orientation of a single magnetic atom.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report electrical conductance measurements of Bi nanocontacts created by repeated tip-surface indentation using a scanning tunneling microscope at temperatures of 4 and 300 K. As a function of the elongation of the nanocontact, we measure robust, tens of nanometers long plateaus of conductance G0=2e2/h at room temperature. This observation can be accounted for by the mechanical exfoliation of a Bi(111) bilayer, a predicted quantum spin Hall (QSH) insulator, in the retracing process following a tip-surface contact. The formation of the bilayer is further supported by the additional observation of conductance steps below G0 before breakup at both temperatures. Our finding provides the first experimental evidence of the possibility of mechanical exfoliation of Bi bilayers, the existence of the QSH phase in a two-dimensional crystal, and, most importantly, the observation of the QSH phase at room temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spin chains are among the simplest physical systems in which electron-electron interactions induce novel states of matter. Here we propose to combine atomic scale engineering and spectroscopic capabilities of state of the art scanning tunnel microscopy to probe the fractionalized edge states of individual atomic scale S=1 spin chains. These edge states arise from the topological order of the ground state in the Haldane phase. We also show that the Haldane gap and the spin-spin correlation length can be measured with the same technique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a new complex system systemic. Here, we are working in a fuzzy environment, so we have to adapt all the previous concepts and results that were obtained in a non-fuzzy environment, for this fuzzy case. The direct and indirect influences between variables will provide the basis for obtaining fuzzy and/or non-fuzzy relationships, so that the concepts of coverage and invariability between sets of variables will appear naturally. These two concepts and their interconnections will be analyzed from the viewpoint of algebraic properties of inclusion, union and intersection (fuzzy and non-fuzzy), and also for the loop concept, which, as we shall see, will be of special importance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among the factors that affect the convergence towards the European Higher Education Area, university teaching staff's motivation is fundamental, and consequently, it is crucial to empirically know what this motivation depends on. In this context, one of the most relevant changes in the teacher-student relationship is assessment. In fact, the transition from a static assessment -focused on only one temporal point (final exam)- to a dynamic assessment, will require changes in thought and action, both on the part of teachers and students. In this line, the objective of this paper is to analyze the determinants of teaching staff's predisposition to the continuous assessment method. Specifically, we consider the following explanatory dimensions: teaching method used (which measures their degree of involvement with the ongoing adaptation process), type of subject (core, compulsory and optional), and teacher's personal characteristics (professional status and gender). The empirical application carried out at the University of Alicante uses Logit Models with Random Coefficients to capture heterogeneity, and shows that "cooperative learning" is a clear-cut determinant of "continuous assessment" as well as "continuous assessment plus final examination". Also, a conspicuous result, which in turn becomes a thought-provoking finding, is that professional status is highly relevant as a teacher's engagement is closely related to prospects of stability. Consequently, the most relevant implications from the results revolve around the way academic institutions can propose and implement inducement for their teaching staff.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The implantation of the new Architecture Degree and the important normative changes in the building sector imply the need to use new teaching methodologies that enhance skills and competences in order to response to the increasing requirements demanded by society to the future architect. The aim of this paper is to present, analyze and discuss the development of multidisciplinary workshops as a new teaching methodology used in several Construction subjects of the Architecture Degree in the University of Alicante. Workshops conceived with the aim to synthesize and complement the technical knowledge acquired by the students during the Degree and to enhance the skills and competencies necessary for the professional practice. With that purpose, we decided to experiment on current subjects of the degree during this academic year, by applying the requirements defined in the future Architecture Degree in a practical way, through workshops between different subjects, superposing the technical knowledge with the resolution of constructive problems in the development of an architectural project. Developing these workshops between subjects we can dissolve the traditional boundaries between different areas of the Degree. This multidisciplinary workshop methodology allows the use of all the global knowledge acquired by students during their studies and at the same time, it enhances students’ ability to communicate and discuss their ideas and solutions in public. It also increases their capacity of self-criticism, and it foments their ability to undertake learning strategies and research in an autonomous way. The used methodology is based on the development of a practical work common to several subjects of different knowledge areas within the "Technology Block" of the future Architecture Degree. Thus, students work approaching the problem in a global way discussing simultaneously with teachers from different areas. By using these new workshops we stimulate an interactive class versus a traditional lecture. Work is evaluated continuously, valuing the participative pupil´s attitude, working in groups in class time, reaching weekly objectives and stimulating the individual responsibility and positive interdependence of the pupil inside the working group. The exercises are designed to improve students’ ability to transmit their ideas and solutions in public, knowing how to discuss and defend their technical resolutions to peers and teachers (Peer Reviewing), their capacity for self-criticism and their capacity to undertake strategies and autonomous learning processes at the same time they develop a personal research into new technologies, systems and materials. Students have shown their majority preference for this teaching methodology by the multidisciplinary workshops offered in the last years, with very satisfactory academic results. In conclusion, it can be verified nowadays the viability of the introduction of new contents and new teaching methodologies necessary for the acquisition of the skills in the future Architecture Degree, through workshops between several subjects that have had a great acceptance in students and positive contrasted academic results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we present a generalization of a new systemic approach to abstract fuzzy systems. Using a fuzzy relations structure will retain the information provided by degrees of membership. In addition, to better suit the situation to be modelled, it is advisable to use T-norm or T-conorm distinct from the minimum and maximum, respectively. This gain in generality is due to the completeness of the work on a higher level of abstraction. You cannot always reproduce the results obtained previously, and also sometimes different definitions with different views are obtained. In any case this approach proves to be much more effective when modelling reality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Teachers are deeply concerned on how to be more effective in our task of teaching. We must organize the contents of our specific area providing them with a logical configuration, for which we must know the mental structure of the students that we have in the classroom. We must shape this mental structure, in a progressive manner, so that they can assimilate the contents that we are trying to transfer, to make the learning as meaningful as possible. In the generative learning model, the links before the stimulus delivered by the teacher and the information stored in the mind of the learner requires an important effort by the student, who should build new conceptual meanings. That effort, which is extremely necessary for a good learning, sometimes is the missing ingredient so that the teaching-learning process can be properly assimilated. In electrical circuits, which we know are perfectly controlled and described by Ohm's law and Kirchhoff's two rules, there are two concepts that correspond to the following physical quantities: voltage and electrical resistance. These two concepts are integrated and linked when the concept of current is presented. This concept is not subordinated to the previous ones, it has the same degree of inclusiveness and gives rise to substantial relations between the three concepts, materializing it into a law: The Ohm, which allows us to relate and to calculate any of the three physical magnitudes, two of them known. The alternate current, in which both the voltage and the current are reversed dozens of times per second, plays an important role in many aspects of our modern life, because it is universally used. Its main feature is that its maximum voltage is easily modifiable through the use of transformers, which greatly facilitates its transfer with very few losses. In this paper, we present a conceptual map so that it is used as a new tool to analyze in a logical manner the underlying structure in the alternate current circuits, with the objective of providing the students from Sciences and Engineering majors with another option to try, amongst all, to achieve a significant learning of this important part of physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The independent predictions of edge ferromagnetism and the quantum spin Hall phase in graphene have inspired the quest of other two-dimensional honeycomb systems, such as silicene, germanene, stanene, iridates, and organometallic lattices, as well as artificial superlattices, all of them with electronic properties analogous to those of graphene, but a larger spin-orbit coupling. Here, we study the interplay of ferromagnetic order and spin-orbit interactions at the zigzag edges of these graphenelike systems. We find an in-plane magnetic anisotropy that opens a gap in the otherwise conducting edge channels that should result in large changes of electronic properties upon rotation of the magnetization.