243 resultados para Química inorgánica
Resumo:
An active hydrogenation Pd complex has been immobilised by impregnation on CNTs submitted to several treatments that lead to important differences in their surface chemistry and in the proportion of tubes with both ends open. Most of the hybrid catalysts are more active than the complex in homogeneous phase, but the support properties have an important impact in the catalytic activity. In general, the more developed the surface chemistry, the lower the activity. However, when CNTs are open at both ends, the Pd complex can enter the tubular cavity and an important enhancement of the catalytic activity due to a confinement effect is observed.
Resumo:
A CNF-monolith sample (carbon nanofibres grown on a ceramic monolith), and a granular carbon xerogel have been used as supports for hybrid catalysts where the active species is an Rh diamine complex. The advantages of these supports are their open porous structure and their morphology, which make catalyst handling easier and avoid difficult separation processes. The obtained catalysts are noticeably more active than the homogeneous Rh complex and are stable against leaching. At first use, partial reduction of the Rh complex takes place and nanometer-sized Rh particles develop, which increases the catalyst activity. Despite the open porous structure, mass transport limitations are present, especially in the case of the carbon xerogel based catalyst. Differences in internal mass transfer limitations are essentially due to the different diffusional path lengths.
Resumo:
The low temperature water-gas shift (WGS) reaction has been studied over two commercial multiwall carbon nanotubes-supported nickel catalysts promoted by ceria. For comparison purposes, activated carbon-supported catalysts have also been studied. The catalytic performance and the characterization by N2 adsorption analysis, powder X-ray diffraction (XRD), temperature-programmed reduction with H2 (TPR-H2), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) analysis showed that the surface chemistry has an important effect on the dispersion of ceria. As a result, ceria was successfully dispersed over the carbon nanotubes (CNTs) with less graphitic character, and the catalyst afforded better activity in WGS than the catalyst prepared over massive ceria. Moreover, a 20 wt.% CeO2 loading over this support was more active than the analogous catalyst with a 40 wt.% loading. The ceria nanoparticles were smaller when the support was previously oxidized, however this resulted in a decrease of the activity.
Resumo:
Two magnetically separable Fe3O4/SiO2 (aerogel and MSU-X) composites with very low Fe3O4 content (<1 wt%) have been successfully prepared at room temperature by co-condensation of MPTES-functionalized Fe3O4 nanoparticles (NPs) with a silicon alkoxide. This procedure yields a homogeneous incorporation of the Fe3O4 NPs on silica supports, leading to magnetic composites that can be easily recovered using an external magnetic field, despite their very low Fe3O4 NPs content (ca. 1 wt%). These novel hybrid Fe3O4/SiO2 materials have been tested for the oxidation reaction of 3,3′,5,5′-tetramethylbenzidine (TMB) with hydrogen peroxide showing an enhancement of the stability of the NPs in the Fe3O4/silica aerogel as compared to the Fe3O4 NPs alone, even after five catalytic cycles, no leaching or agglomeration of the Fe3O4/SiO2 systems.
Resumo:
Carbon and graphene-based materials often show some amount of pseudocapacitance due to their oxygen-functional groups. However, such pseudocapacitance is generally negligible in organic electrolytes and has not attracted much attention. In this work, we report a large pseudocapacitance of zeolite-templated carbon (ZTC) based on the oxygen-functional groups in 1 M tetraethylammonium tetrafluoroborate dissolved in propylene carbonate (Et4NBF4/PC). Due to its significant amount of active edge sites, a large amount of redox-active oxygen functional groups are introduced into ZTC, and ZTC shows a high specific capacitance (330 F g−1). Experimental results suggest that the pseudocapacitance could be based on the formation of anion and cation radicals of quinones and ethers, respectively. Moreover, ZTC shows pseudocapacitance also in 1 M lithium hexafluorophosphate dissolved with a mixture of ethylene carbonate and diethyl carbonate (LiPF6/EC+DEC) which is used for lithium-ion batteries and lithium-ion capacitors.
Resumo:
The effect of the electrochemical treatment (potentiostatic treatment in a filter-press electrochemical cell) on the adsorption capacity of an activated carbon cloth (ACC) was analyzed in relation with the removal of 8-quinolinecarboxylic acid pollutant from water. The adsorption capacity of an ACC is quantitatively improved in the presence of an electric field (electroadsorption process) reaching values of 96% in comparison to 55% in absence of applied potential. In addition, the cathodic treatment results in higher removal efficiencies than the anodic treatment. The enhanced adsorption capacity has been proved to be irreversible, since the removed compound remains adsorbed after switching the applied potential. The kinetics of the adsorption processes is also improved by the presence of an applied potential.
Resumo:
Supercapacitors are energy storage devices that offer a high power density and a low energy density in comparison with batteries. Their limited energy density can be overcome by using asymmetric configuration in mass electrodes, where each electrode works within their maximum available potential window, rendering the maximum voltage output of the system. Such asymmetric capacitors are optimized using the capacitance and the potential stability limits of the electrodes, with the reliability of the design largely depending on the accuracy and the approach taken for the electrochemical characterization. Therefore, the performance could be lower than expected and even the system could break down, if a well thought out procedure is not followed. In this work, a procedure for the development of asymmetric supercapacitors based on activated carbons is detailed. Three activated carbon materials with different textural properties and surface chemistry have been systematically characterized in neutral aqueous electrolyte. The asymmetric configuration of the masses of both electrodes in the supercapacitor has allowed to cover a higher potential window, resulting in an increase of the energy density of the three devices studied when compared with the symmetric systems, and an improved cycle life.
Resumo:
The presence of a highly tunable porous structure and surface chemistry makes metal–organic framework (MOF) materials excellent candidates for artificial methane hydrate formation under mild temperature and pressure conditions (2 °C and 3–5 MPa). Experimental results using MOFs with a different pore structure and chemical nature (MIL-100 (Fe) and ZIF-8) clearly show that the water–framework interactions play a crucial role in defining the extent and nature of the gas hydrates formed. Whereas the hydrophobic MOF promotes methane hydrate formation with a high yield, the hydrophilic one does not. The formation of these methane hydrates on MOFs has been identified for the first time using inelastic neutron scattering (INS) and synchrotron X-ray powder diffraction (SXRPD). The results described in this work pave the way towards the design of new MOF structures able to promote artificial methane hydrate formation upon request (confined or non-confined) and under milder conditions than in nature.
Resumo:
The process of liquid silicon infiltration is investigated for channels with radii from 0.25 to 0.75 [mm] drilled in compact carbon preforms. The advantage of this setup is that the study of the phenomenon results to be simplified. For comparison purposes, attempts are made in order to work out a framework for evaluating the accuracy of simulations. The approach relies on dimensionless numbers involving the properties of the surface reaction. It turns out that complex hydrodynamic behavior derived from second Newton law can be made consistent with Lattice-Boltzmann simulations. The experiments give clear evidence that the growth of silicon carbide proceeds in two different stages and basic mechanisms are highlighted. Lattice-Boltzmann simulations prove to be an effective tool for the description of the growing phase. Namely, essential experimental constraints can be implemented. As a result, the existing models are useful to gain more insight on the process of reactive infiltration into porous media in the first stage of penetration, i.e. up to pore closure because of surface growth. A way allowing to implement the resistance from chemical reaction in Darcy law is also proposed.
Resumo:
The end of 2015 was the deadline that 189 countries gave themselves to achieve the United Nations Millennium Development Goals (MDGs), a list of eight goals that were agreed upon and approved by the UN after the Millennium Summit in year 2000. Despite some legitimate criticism, the MDGs were revealed as an important tool towards building a more equitable and sustainable world. Yet our planet still faces many challenges. In September 2015, the UN approved a new set of 17 goals, the Sustainable Development Goals (SDGs), aiming to develop and implement strategies to create “The Future We Want”; strategies that 192 countries agreed upon to work together towards a more sustainable planet.
Resumo:
A procedure is proposed to name new chemical elements. After the discovery of a new element is established by the joint IUPAC-IUPAP Working Group, the discoverers are invited to propose a name and a symbol to the IUPAC Inorganic Chemistry Division. Elements can be named after a mythological concept, a mineral, a place or country, a property or a scientist. After examination and acceptance by the Inorganic Chemistry Division, the proposal follows the accepted IUPAC procedure and is then ratified by the Council of IUPAC. This document is a slightly amended version of the 2002 IUPAC Recommendations; the most important change is that the names of all new elements should have an ending that reflects and maintains historical and chemical consistency. This would be in general “-ium” for elements belonging to groups 1–16, i.e. including the f-block elements, “-ine” for elements of group 17 and “-on” for elements of group 18.
Resumo:
Resorcinol-Formaldehyde xerogels are organic polymers that can be easily tailored to have specific properties. These materials are composed of carbon, hydrogen and oxygen, and have a surface that is very rich in oxygen functionalities, and is therefore very hydrophilic. Their most interesting feature is that they may have the same chemical composition but a different porous texture. Consequently, the influence of porous characteristics, such as pore volume, surface area or pore size can be easily assessed. In this work, a commonly used desiccant, silica gel, is compared with organic xerogels to determine their rate and capacity of water adsorption, and to evaluate the role of surface chemistry versus porous texture. It was found that organic xerogels showed a higher rate of moisture adsorption than silica gel. Pore structure also seems to play an important role in water adsorption capacity. The OX-10 sample, whose porosity was mainly composed of micro-mesoporosity displayed a water adsorption capacity two times greater than that of the silica gel, and three times higher than that of the totally macroporous xerogel OX-2100. The presence of feeder pores (mesopores) that facilitate the access to the hydrophilic surface was observed to be the key factor for a good desiccant behaviour. Neither the total pore volume nor the high surface area (i.e. high microporosity) of the desiccant sample, is as important as the mesopore structure.
Resumo:
5% copper catalysts with Ce0.8M0.2Oδ supports (M = Zr, La, Ce, Pr or Nd) have been studied by rapid-scan operando DRIFTS for NOx Storage and Reduction (NSR) with high frequency (30 s) CO, H2 and 50%CO + 50%H2 micropulses. In the absence of reductant pulses, below 200–250 °C NOx was stored on the catalysts as nitrite and nitro groups, and above this temperature nitrates were the main species identified. The thermal stability of the NOx species stored on the catalysts depended on the acid/basic character of the dopant (M more acidic = NOx stored less stable ⇒ Zr4+ < none < Nd3+ < Pr3+ < La3+ ⇐ M more basic = NOx stored more stable). Catalysts regeneration was more efficient with H2 than with CO, and the CO + H2 mixture presented an intermediate behavior, but with smaller differences among the series of catalyst than observed using CO alone. N2 is the main NOx reduction product upon H2 regeneration. The highest NOx removal in NSR experiments performed at 400 °C with CO + H2 pulses was achieved with the catalyst with the most basic dopant (CuO/Ce0.8La0.2Oδ) while the poorest performing catalyst was that with the most acidic dopant (CuO/Ce0.8Zr0.2Oδ). The poor performance of CuO/Ce0.8Zr0.2Oδ in NSR experiments with CO pulses was attributed to its lower oxidation capacity compared to the other catalysts.
Resumo:
Remaining silicon in SiC-based materials produced via reactive infiltration limits their use in high-temperature applications due to the poor mechanical properties of silicon: low fracture toughness, extreme fragility and creep phenomena above 1000 °C. In this paper SiC–FeSi2 composites are fabricated by reactive infiltration of Si–Fe alloys into porous Cf/C preforms. The resulting materials are SiC/FeSi2 composites, in which remaining silicon is reduced by formation of FeSi2. For the richest Fe alloys (35 wt% Fe) a nominal residual silicon content below 1% has been observed. However this, the relatively poor mechanical properties (bending strength) measured for those resulting materials can be explained by the thermal mismatch of FeSi2 and SiC, which weakens the interface and does even generate new porosity, associated with a debonding phenomenon between the two phases.