154 resultados para Procesamiento en lenguaje natural
Resumo:
Se presenta un estudio y propuesta de interoperabilidad semántica entre ontologías del dominio de la salud basada en técnicas de procesamiento del lenguaje natural. El objetivo fundamental ha sido el desarrollo de un algoritmo de interconexión semántica entre los términos de dos ontologías solapadas y heterogéneas, denominadas «fuente» (Clasificación internacional de enfermedades, 9ª revisión, modificación clínica: CIE-9-MC) y «diana» (esquema jerárquico de la asignatura Enfermería Materno-Infantil: EMI). Esta propuesta permite emparejar semánticamente ontologías, a partir de la reutilización de otro recurso ontológico (WordNet español), sin destruir o modificar la semántica de identidad de cada una de las ontologías involucradas. El modelo presentado puede permitir al usuario acceder a la información que necesita en otra clasificación jerárquica, sin precisar de un entrenamiento referido a la conceptualización de cada sistema, pues utilizaría la ontología «diana» con la que está familiarizado para su aplicación a la recuperación de información.
Resumo:
Este artículo presenta la aplicación y resultados obtenidos de la investigación en técnicas de procesamiento de lenguaje natural y tecnología semántica en Brand Rain y Anpro21. Se exponen todos los proyectos relacionados con las temáticas antes mencionadas y se presenta la aplicación y ventajas de la transferencia de la investigación y nuevas tecnologías desarrolladas a la herramienta de monitorización y cálculo de reputación Brand Rain.
Resumo:
El campo de procesamiento de lenguaje natural (PLN), ha tenido un gran crecimiento en los últimos años; sus áreas de investigación incluyen: recuperación y extracción de información, minería de datos, traducción automática, sistemas de búsquedas de respuestas, generación de resúmenes automáticos, análisis de sentimientos, entre otras. En este artículo se presentan conceptos y algunas herramientas con el fin de contribuir al entendimiento del procesamiento de texto con técnicas de PLN, con el propósito de extraer información relevante que pueda ser usada en un gran rango de aplicaciones. Se pueden desarrollar clasificadores automáticos que permitan categorizar documentos y recomendar etiquetas; estos clasificadores deben ser independientes de la plataforma, fácilmente personalizables para poder ser integrados en diferentes proyectos y que sean capaces de aprender a partir de ejemplos. En el presente artículo se introducen estos algoritmos de clasificación, se analizan algunas herramientas de código abierto disponibles actualmente para llevar a cabo estas tareas y se comparan diversas implementaciones utilizando la métrica F en la evaluación de los clasificadores.
Resumo:
El análisis de textos de la Web 2.0 es un tema de investigación relevante hoy en día. Sin embargo, son muchos los problemas que se plantean a la hora de utilizar las herramientas actuales en este tipo de textos. Para ser capaces de medir estas dificultades primero necesitamos conocer los diferentes registros o grados de informalidad que podemos encontrar. Por ello, en este trabajo intentaremos caracterizar niveles de informalidad para textos en inglés en la Web 2.0 mediante técnicas de aprendizaje automático no supervisado, obteniendo resultados del 68 % en F1.
Resumo:
El objetivo general de este proyecto se centra en el estudio, desarrollo y experimentación de diferentes técnicas y sistemas basados en Tecnologías del Lenguaje Humano (TLH) para el desarrollo de la próxima generación de sistemas de procesamiento inteligente de la información digital (modelado, recuperación, tratamiento, comprensión y descubrimiento) afrontando los actuales retos de la comunicación digital. En este nuevo escenario, los sistemas deben incorporar capacidades de razonamiento que descubrirán la subjetividad de la información en todos sus contextos (espacial, temporal y emocional) analizando las diferentes dimensiones de uso (multilingualidad, multimodalidad y registro).
Resumo:
Proyecto emergente centrado en la detección e interpretación de metáforas con métodos no supervisados. Se presenta la caracterización del problema metafórico en Procesamiento del Lenguaje Natural, los fundamentos teóricos del proyecto y los primeros resultados.
Resumo:
En este artículo presentamos un método basado en la teoría del paralelismo para la identificación y resolución de elementos extrapuestos en textos no restringidos. Esta teoría de paralelismo está basada en (Palomar 96) y se amplía con el desarrollo de técnicas de análisis parcial –en las que se estudia las partes relevantes del texto- que facilitan la resolución de los fenómenos lingüísticos. Nos basaremos en los programas Datalog extendidos (Dahl 94) (Dahl 95) como herramienta para la definición e implementación de gramáticas. Éstas no están basadas en reglas gramaticales sino en la detección de información relevante, relajando el proceso y ampliando el conjunto potencial de textos analizables.
Resumo:
Uno de los problemas actuales en el dominio de la salud es reutilizar y compartir la información clínica entre profesionales, ya que ésta se encuentra escrita usando terminologías específicas. Una posible solución es usar un recurso de conocimiento común sobre el que mapear la información existente. Nuestro objetivo es comprobar si la adición de conocimiento semántico superficial puede mejorar los mapeados establecidos. Para ello experimentamos con un conjunto de etiquetas de NANDA-I y con un conjunto de descripciones de SNOMED-CT en castellano. Los resultados obtenidos en los experimentos muestran que la inclusión de conocimiento semántico superficial mejora significativamente el mapeado léxico entre los dos recursos estudiados.
Resumo:
Proyecto emergente centrado en la desambiguación de topónimos y la detección del foco geográfico en el texto. La finalidad es mejorar el rendimiento de los sistemas de recuperación de información geográfica. Se describen los problemas abordados, la hipótesis de trabajo, las tareas a realizar y los objetivos parciales alcanzados.
Resumo:
El foco geográfico de un documento identifica el lugar o lugares en los que se centra el contenido del texto. En este trabajo se presenta una aproximación basada en corpus para la detección del foco geográfico en el texto. Frente a otras aproximaciones que se centran en el uso de información puramente geográfica para la detección del foco, nuestra propuesta emplea toda la información textual existente en los documentos del corpus de trabajo, partiendo de la hipótesis de que la aparición de determinados personajes, eventos, fechas e incluso términos comunes, pueden resultar fundamentales para esta tarea. Para validar nuestra hipótesis, se ha realizado un estudio sobre un corpus de noticias geolocalizadas que tuvieron lugar entre los años 2008 y 2011. Esta distribución temporal nos ha permitido, además, analizar la evolución del rendimiento del clasificador y de los términos más representativos de diferentes localidades a lo largo del tiempo.
Resumo:
Este trabajo presenta el uso de una ontología en el dominio financiero para la expansión de consultas con el fin de mejorar los resultados de un sistema de recuperación de información (RI) financiera. Este sistema está compuesto por una ontología y un índice de Lucene que permite recuperación de conceptos identificados mediante procesamiento de lenguaje natural. Se ha llevado a cabo una evaluación con un conjunto limitado de consultas y los resultados indican que la ambigüedad sigue siendo un problema al expandir la consulta. En ocasiones, la elección de las entidades adecuadas a la hora de expandir las consultas (filtrando por sector, empresa, etc.) permite resolver esa ambigüedad.
Resumo:
El objetivo de este proyecto se basa en la necesidad de replantearse la filosofía clásica del TLH para adecuarse tanto a las fuentes disponibles actualmente (datos no estructurados con multi-modalidad, multi-lingualidad y diferentes grados de formalidad) como a las necesidades reales de los usuarios finales. Para conseguir este objetivo es necesario integrar tanto la comprensión como la generación del lenguaje humano en un modelo único (modelo LEGOLANG) basado en técnicas de deconstrucción de la lengua, independiente de su aplicación final y de la variante de lenguaje humano elegida para expresar el conocimiento.
Resumo:
Proyecto emergente centrado en el tratamiento de textos educativos en castellano con la finalidad de reducir las barreras lingüísticas que dificultan la comprensión lectora a personas con deficiencias auditivas, o incluso a personas aprendiendo una lengua distinta a su lengua materna. Se describe la metodología aplicada para resolver los distintos problemas relacionados con el objetivo a conseguir, la hipótesis de trabajo y las tareas y los objetivos parciales alcanzados.