3 resultados para transmissivity
em University of Washington
Resumo:
This study is aimed at determining the spatial distribution, physical properties, and groundwater conditions of the Vashon advance outwash (Qva) in the Mountlake Terrace, WA area. The Qva is correlative with the Esperance Sand, as defined at its type section; however, local variations in the Qva are not well-characterized (Mullineaux, 1965). While the Qva is a dense glacial unit with low compressibility and high frictional shear strength (Gurtowski and Boirum, 1989), the strength of this unit can be reduced when it becomes saturated (Tubbs, 1974). This can lead to caving or flowing in excavations, and on a larger scale, can lead to slope failures and mass-wasting when intersected by steep slopes. By studying the Qva, we can better predict how it will behave under certain conditions, which will be beneficial to geologists, hydrogeologists, engineers, and environmental scientists during site assessments and early phases of project planning. In this study, I use data from 27 geotechnical borings from previous field investigations and C-Tech Corporation’s EnterVol software to create three-dimensional models of the subsurface geology in the study area. These models made it possible to visualize the spatial distribution of the Qva in relation to other geologic units. I also conducted a comparative study between data from the borings and generalized published data on the spatial distribution, relative density, soil classification, grain-size distribution, moisture content, groundwater conditions, and aquifer properties of the Qva. I found that the elevation of the top of the Qva ranges from 247 to 477 ft. I found that the Qva is thickest where the modern topography is high, and is thinnest where the topography is low. The thickness of the Qva ranges from absent to 242 ft. Along the northern, east-west trending transect, the Qva thins to the east as it rises above a ridge composed of Pre- Vashon glacial deposits. Along the southern, east-west trending transect, the Qva pinches out against a ridge composed of pre-Vashon interglacial deposits. Two plausible explanations for this ridge are paleotopography and active faulting associated with the Southern Whidbey Fault Zone. Further investigations should be done using geophysical methods and the modeling methods described in this study to determine the nature of this ridge. The relative density of the Qva in the study area ranges from loose to very dense, with the loose end of the spectrum probably relating to heave in saturated sands. I found subtle correlations between density and depth. Volumetric analysis of the soil groups listed in the boring logs indicate that the Qva in the study area is composed of approximately 9.5% gravel, 89.3% sand, and 1.2% silt and clay. The natural moisture content ranges from 3.0 to 35.4% in select samples from the Qva. The moisture content appears to increase with depth and fines content. The water table in the study area ranges in elevation from 231.9 to 458 ft, based on observations and measurements recorded in the boring logs. The results from rising-head and falling-head slug tests done at a single well in the study area indicate that the geometric mean of hydraulic conductivity is 15.93 ft/d (5.62 x 10-03 cm/s), the storativity is 3.28x10-03, and the estimated transmissivity is 738.58 ft2/d in the vicinity of this observation well. At this location, there was 1.73 ft of seasonal variation in groundwater elevation between August 2014 and March 2015.
Resumo:
Island County is located in the Puget Sound of Washington State and includes several islands, the largest of which is Whidbey Island. Central Whidbey Island was chosen as the project site, as residents use groundwater for their water supply and seawater intrusion near the coast is known to contaminate this resource. In 1989, Island County adopted a Saltwater Intrusion Policy and used chloride concentrations in existing wells in order to define and map “risk zones.” In 2005, this method of defining vulnerability was updated with the use of water level elevations in conjunction with chloride concentrations. The result of this work was a revised map of seawater intrusion vulnerability that is currently in use by Island County. This groundwater management strategy is defined as trigger-level management and is largely a reactive tool. In order to evaluate trends in the hydrogeologic processes at the site, including seawater intrusion under sea level rise scenarios, this report presents a workflow where groundwater flow and discharge to the sea are quantified using a revised conceptual site model. The revised conceptual site model used several simplifying assumptions that allow for first-order quantitative predictions of seawater intrusion using analytical methods. Data from water well reports included lithologic and well construction information, static water levels, and aquifer tests for specific capacity. Results from specific capacity tests define the relationship between discharge and drawdown and were input for a modified Theis equation to solve for transmissivity (Arihood, 2009). Components of the conceptual site model were created in ArcGIS and included interpolation of water level elevation, creation of groundwater basins, and the calculation of net recharge and groundwater discharge for each basin. The revised conceptual site model was then used to hypothesize regarding hydrogeologic processes based on observed trends in groundwater flow. Hypotheses used to explain a reduction in aquifer thickness and hydraulic gradient were: (1) A large increase in transmissivity occurring near the coast. (2) The reduced aquifer thickness and hydraulic gradient were the result of seawater intrusion. (3) Data used to create the conceptual site model were insufficient to resolve trends in groundwater flow. For Hypothesis 2, analytical solutions for groundwater flow under Dupuit assumptions were applied in order to evaluate seawater intrusion under projected sea level rise scenarios. Results indicated that a rise in sea level has little impact on the position of a saltwater wedge; however, a reduction in recharge has significant consequences. Future work should evaluate groundwater flow using an expanded monitoring well network and aquifer recharge should be promoted by reducing surface water runoff.
Resumo:
Redmond Ridge East (RRE) is a large-scale master plan community in East King County, WA. In this report, I evaluate the spatial variability of the Quaternary Advance Outwash (Qva) at RRE and the time-series data for 16 water wells with the intent to better understand groundwater below the RRE area. I investigate changes between pre- and post-development conditions through the determination of temporal changes in annual water level, annual water level fluctuations, hydraulic head response to precipitation, and ambient drainage of the aquifer. I also perform a basic analysis of the annual aquifer recharge and a determination for the storage through the implementation of the water table fluctuation (WTF) method. Associated Earth Sciences (AESI) was tasked with monitoring the geological and environmental impacts during the development of RRE and collected the data I use in this report. AESI involvement in monitoring began in 1998 and extends to the present. Sixteen wells were identified in the RRE area with adequate temporal data to conduct the analysis. A comparison of the well logs and aquifer testing data allowed local variations in the Qva to be mapped. The WTF was used to determine a range of reasonable specific yield values for locations where the Qva was unconfined. Yearly average of the seasonal water level high and lows, and the fluctuations were quantified. Temporal relationships were established through linear regression. The average water level was found to be increasing in some locations, and the corresponding fluctuations were found to decrease. However, no clear change between pre- and post-development was observed. The response of hydraulic head to precipitation was investigated through an analysis of hydrographs for ten wells. Periods of consistent response and the corresponding precipitation during each period were delineated. A linear relationship between precipitation and water level change was determined. The threshold precipitation under which there is a positive response in the hydraulic head was established. No observable changes were apparent between pre- and post-development conditions. The ambient drainage for the Qva was calculated using recessional periods on the hydrograph. The transmissivity of Qva varies with thickness of the overlying lodgment till and thickness of the Qva, itself. Water level fluctuations observed in the Qva are consistent with regional observations. Localized areas in the Qva display the large 10 foot fluctuations and these anomalies are likely due to a combination of the local variability in the storativity as well as the concentration and channeling of water due to geographical variations in the Qva and the overlying topography. All trends seen in the RRE area remained relatively constant through time. There was no evidence showing an effect of development on the hydraulic head at RRE. This implies that the style and distribution of infiltration has not changed as a result of development, and that any measures in place are properly mitigating the effects of development on the RRE region.