4 resultados para style and location
em University of Washington
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
In September 2013, the Colorado Front Range experienced a five-day storm that brought record-breaking precipitation to the region. As a consequence, many Front Range streams experienced flooding, leading to erosion, debris flows, bank failures and channel incision. I compare the effects that debris flows and flooding have on the channel bar frequency, frequency and location of wood accumulation, and on the shape and size of the channel along two flood impacted reaches located near Estes Park and Glen Haven, Colorado within Rocky Mountain National Park and Arapaho-Roosevelt National Forest: Black Canyon Creek (BCC) and North Fork Big Thompson River (NFBT). The primary difference between the two study areas is that BCC was inundated by multiple debris flows, whereas NFBT only experienced flooding. Fieldwork consisted of recording location and size of large wood and channel bars and surveying reaches to produce cross-sections. Additional observations were made on bank failures in NFBT and the presence of boulders in channel bars in BCC to determine sediment source. The debris flow acted to scour and incise BCC causing long-term alteration. The post-flood channel cross-sectional area is as much as 7 to 23 times larger than the pre-flood channel, caused by the erosion of the channel bed to bedrock and the elimination of riparian vegetation. Large wood was forced out of the stream channel and deposited outside of the bankfull channel. Flooding in NFBT caused bank erosion and widening that contributed sediment to channel bars, but accomplished little stream-bed scour. As a result, there was relatively little damage to mid-channel and riparian vegetation, and most large wood remained within the wetted channel.
Resumo:
Landforms within the Skagit Valley record a complex history of land evolution from Late Pleistocene to the present. Late Pleistocene glacial deposits and subsequent incision by the Skagit River formed the Burpee Hills terrace. The Burpee Hills comprises an approximately 205-m-thick sequence of sediments, including glacio-lacustrine silts and clays, overlain by sandy advance outwash and capped by coarse till, creating a sediment-mantled landscape where mass wasting occurs in the form of debris flows and deep-seated landslides (Heller, 1980; Skagit County, 2014). Landslide probability and location are necessary metrics for informing citizens and policy makers of the frequency of natural hazards. Remote geomorphometric analysis of the site area using airborne LiDAR combined with field investigation provide the information to determine relative ages of landslide deposits, to classify geologic units involved, and to interpret the recent hillslope evolution. Thirty-two percent of the 28-km2 Burpee Hills landform has been mapped as landslide deposits. Eighty-five percent of the south-facing slope is mapped as landslide deposits. The mapped landslides occur predominantly within the advance outwash deposits (Qgav), this glacial unit has a slope angle ranging from 27 to 36 degrees. Quantifying surface roughness as a function of standard deviation of slope provides a relative age of landslide deposits, laying the groundwork for frequency analysis of landslides on the slopes of the Burpee Hills. The south-facing slopes are predominately affected by deep-seated landslides as a result of Skagit River erosion patterns within the floodplain. The slopes eroded at the toe by the Skagit River have the highest roughness coefficients, suggesting that areas with more frequent disturbance at the toe are more prone to sliding or remobilization. Future work including radiocarbon dating and hydrologic-cycle investigations will provide a more accurate timeline of the Burpee Hills hillslope evolution, and better information for emergency management and planners in the future.
Resumo:
Redmond Ridge East (RRE) is a large-scale master plan community in East King County, WA. In this report, I evaluate the spatial variability of the Quaternary Advance Outwash (Qva) at RRE and the time-series data for 16 water wells with the intent to better understand groundwater below the RRE area. I investigate changes between pre- and post-development conditions through the determination of temporal changes in annual water level, annual water level fluctuations, hydraulic head response to precipitation, and ambient drainage of the aquifer. I also perform a basic analysis of the annual aquifer recharge and a determination for the storage through the implementation of the water table fluctuation (WTF) method. Associated Earth Sciences (AESI) was tasked with monitoring the geological and environmental impacts during the development of RRE and collected the data I use in this report. AESI involvement in monitoring began in 1998 and extends to the present. Sixteen wells were identified in the RRE area with adequate temporal data to conduct the analysis. A comparison of the well logs and aquifer testing data allowed local variations in the Qva to be mapped. The WTF was used to determine a range of reasonable specific yield values for locations where the Qva was unconfined. Yearly average of the seasonal water level high and lows, and the fluctuations were quantified. Temporal relationships were established through linear regression. The average water level was found to be increasing in some locations, and the corresponding fluctuations were found to decrease. However, no clear change between pre- and post-development was observed. The response of hydraulic head to precipitation was investigated through an analysis of hydrographs for ten wells. Periods of consistent response and the corresponding precipitation during each period were delineated. A linear relationship between precipitation and water level change was determined. The threshold precipitation under which there is a positive response in the hydraulic head was established. No observable changes were apparent between pre- and post-development conditions. The ambient drainage for the Qva was calculated using recessional periods on the hydrograph. The transmissivity of Qva varies with thickness of the overlying lodgment till and thickness of the Qva, itself. Water level fluctuations observed in the Qva are consistent with regional observations. Localized areas in the Qva display the large 10 foot fluctuations and these anomalies are likely due to a combination of the local variability in the storativity as well as the concentration and channeling of water due to geographical variations in the Qva and the overlying topography. All trends seen in the RRE area remained relatively constant through time. There was no evidence showing an effect of development on the hydraulic head at RRE. This implies that the style and distribution of infiltration has not changed as a result of development, and that any measures in place are properly mitigating the effects of development on the RRE region.