3 resultados para riparian

em University of Washington


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A specific type of natural log jam in the upper alluvial reach of the Carbon River was found to influence secondary channel avulsion, causing flooding hazards to the adjacent Carbon River Road in the northwest quadrant of Mount Rainier National Park, Washington. The fence-like natural log jam was characterized by large woody debris buttressed horizontally against standing riparian trees (i.e. ìfence railsî and ìfence postî). The objectives of this report are two-fold. First, physical characteristics and spatial distribution were documented to determine the geomorphic controls on the fence-like log jams. Second, the function and timing of the natural log jam in relation to channel avulsion was determined to provide insight into flooding hazards along the Carbon River Road. The fence-like log jams are most abundant in the upper reaches of the Carbon River between 3.0 and 5.5 kilometers from the Carbon Glacier terminus, where longitudinal gradient significantly decreases from about 0.06 to 0.03. Sediment impoundment can occur directly upstream of the fence-like log jam, creating vertical bed elevation difference as high as 1.32 meters, and can form during low magnitude, high frequency flood event (3.5-year recurrence interval). In some locations, headcuts and widening of secondary channel were observed directly to the side of the log jams, suggesting its role in facilitating secondary channel avulsions. Areas along the Carbon River Road more prone to damages from avulsion hazards were identified by coupling locations of the log jams and Relative Water Surface Elevation map created using the 1-meter 2012 Light Detection and Ranging Digital Elevation Map. Ultimately, the results of this report may provide insight to flooding hazards along the Carbon River Road from log jam-facilitated channel avulsion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The focus of this report is is the channel conditions at Vasa Creek, Bellevue, Washington, with regard to kokanee habitat and slope stability. This required a geomorphic and geologic assessment of the stream and riparian corridor along Vasa Creek. I focused my efforts in a 720m study-reach just south of I-90 in which City of Bellevue had no information. My assessment is divided into 3 categories: channel morphology, geology, and landslide hazards. I described the channel morphology by determining the gradient of the channel, longitudinal and cross-channel geometries, grain size distribution, embeddedness observations, type of channel reaches present, and the locations of significant in-channel woody-debris, landslides, scarps, landslide debris, and erosional features. This was done by conducting a longitudinal survey, 7 cross-channel surveys, pebble counts, and visual observations with the aid of a GPS device for mapping. I completed my geological assessment using both field observations and borehole data provided by GeoMapNW. Borehole data provided logs of the subsurface material at specific locations. In the field, I interpreted local geology using material in the channel as well as exposures in the adjacent slope. I completed the landslide hazard assessment using GIS methods supplemented by field observations. GIS methods included the use of aerial LiDAR to discern slope values and locations of features. Features of interest include the locations of scarps, landslides, landslide debris, and erosional features which were observed in the field. I classified 4 slope classes using ArcMap10 along with the locations of previously mapped landslides, scarps, and landslide debris. I describe the risk of slope failure according to the Washington Administration Code definition of critical areas (WAC 365-190-120 6a-i). My results are presented in the form of a map suite containing a channel morphology map, geology map, and landslide hazard map. The channel is a free-formed alluvial plane-bed reach with infrequent step-pools with riffles associated with landslide debris that chokes the channel. Overall I found that there is not the potential for kokanee habitat due flashy behavior (sudden high flow events), landslide inundation, and a lack of favorable conditions within the channel. The updated geologic map displays advance outwash deposits and alluvium present within the study-reach, as opposed to exposures of the Blakeley Formation along with other corrections from borehole data interpretations. The landslide hazard map shows that there are areas at high risk for slope failure along the channel that should be looked into further.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In September 2013, the Colorado Front Range experienced a five-day storm that brought record-breaking precipitation to the region. As a consequence, many Front Range streams experienced flooding, leading to erosion, debris flows, bank failures and channel incision. I compare the effects that debris flows and flooding have on the channel bar frequency, frequency and location of wood accumulation, and on the shape and size of the channel along two flood impacted reaches located near Estes Park and Glen Haven, Colorado within Rocky Mountain National Park and Arapaho-Roosevelt National Forest: Black Canyon Creek (BCC) and North Fork Big Thompson River (NFBT). The primary difference between the two study areas is that BCC was inundated by multiple debris flows, whereas NFBT only experienced flooding. Fieldwork consisted of recording location and size of large wood and channel bars and surveying reaches to produce cross-sections. Additional observations were made on bank failures in NFBT and the presence of boulders in channel bars in BCC to determine sediment source. The debris flow acted to scour and incise BCC causing long-term alteration. The post-flood channel cross-sectional area is as much as 7 to 23 times larger than the pre-flood channel, caused by the erosion of the channel bed to bedrock and the elimination of riparian vegetation. Large wood was forced out of the stream channel and deposited outside of the bankfull channel. Flooding in NFBT caused bank erosion and widening that contributed sediment to channel bars, but accomplished little stream-bed scour. As a result, there was relatively little damage to mid-channel and riparian vegetation, and most large wood remained within the wetted channel.