6 resultados para presumption of fault

em University of Washington


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Seattle Fault is an active east-west trending reverse fault zone that intersects both Seattle and Bellevue, two highly populated cities in Washington. Rupture along strands of the fault poses a serious threat to infrastructure and thousands of people in the region. Precise locations of fault strands are still poorly constrained in Bellevue due to blind thrusting, urban development, and/or erosion. Seismic reflection and aeromagnetic surveys have shed light on structural geometries of the fault zone in bedrock. However, the fault displaces both bedrock and unconsolidated Quaternary deposits, and seismic data are poor indicators of the locations of fault strands within the unconsolidated strata. Fortunately, evidence of past fault strand ruptures may also be recorded indirectly by fluvial processes and should also be observable in the subsurface. I analyzed hillslope and river geomorphology using LiDAR data and ArcGIS to locate surface fault traces and then compare/correlate these findings to subsurface offsets identified using borehole data. Geotechnical borings were used to locate one fault offset and provide input to a cross section of the fault constructed using Rockworks software. Knickpoints, which may correlate to fault rupture, were found upstream of this newly identified fault offset as well as upstream of a previously known fault segment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This poster presents the authors’ work to date on developing an application profile for authenticity metadata (the IPAM, or InterPARES Authenticity Metadata), including (1) the functional requirements,(2) metadata elements derived from the Chain of Preservation model from the InterPARES research project, (3) a crosswalk of a sample of IPAM elements to Dublin Core, PREMIS, and MoReq2010,(4) those elements deemed essential to presume the authenticity of a record as it moves from creation to permanent preservation, and (5) next steps, integrating the application profile into the Archivematica preservation system the core elements of the application profile relating to maintaining the presumption of authenticity through preservation and access.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study identifies lineaments that indicate fault activity and strengthens previous interpretations of structures within the eastern extent of the Seattle Fault zone in Bellevue, WA. My investigation has compiled geotechnical subsurface data, high-resolution LiDAR imagery, and ground-penetrating radar to produce strip log sections transecting identified lineaments and depth-to-bedrock maps exposing fault structure. My work incorporates field investigation, multiple publicly available datasets, and subsurface modeling. My results include a map showing twenty-eight identified surface lineaments, five strip-log sections, and interpolated depth-to-bedrock and minimum-depth-to-bedrock maps. Several lineaments identified in the minimum-depth-to-bedrock raster are parallel to the Seattle Fault zone and suggest the presence of small splay faults beneath east Bellevue. These results strengthen previous interpretations of seismic profile data located in the study area. Another lineament identified in the minimum-depth-to-bedrock raster suggest an unmapped tear fault accommodating differential offset along fault strike between Mercer Island and Bellevue. This work also demonstrates the utility of publicly available datasets such as geotechnical subsurface explorations and LiDAR imagery in supplementing geologic investigations in the eastern extent of the Seattle Fault zone.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Contributing to the evaluation of seismic hazards, a previously unmapped strand of the Seattle Fault Zone (SFZ), cutting across the southwest side of Lake Washington and southeast Seattle, is located and characterized on the basis of bathymetry, borehole logs, and ground penetrating radar (GPR). Previous geologic mapping and geophysical analysis of the Seattle area have generally mapped the locations of some strands of the SFZ, though a complete and accurate understanding of locations of all individual strands of the fault system is still incomplete. A bathymetric scarp-like feature and co-linear aeromagnetic anomaly lineament defined the extent of the study area. A 2-dimensional lithology cross-section was constructed using six boreholes, chosen from suitable boreholes in the study area. In addition, two GPR transects, oblique to the proposed fault trend, served to identify physical differences in subsurface materials. The proposed fault trace follows the previously mapped contact between the Oligocene Blakeley Formation and Quaternary deposits, and topographic changes in slope. GPR profiles in Seward Park and across the proposed fault location show the contact between the Blakeley Formation and unconsolidated glacial deposits, but it does not constrain an offset. However, north-dipping beds in the Blakely Formation are consistent with previous interpretations of P-wave seismic profiles on Mercer Island and Bellevue, Washington. The profiles show the mapped location of the aeromagnetic lineament in Lake Washington and the inferred location of the steeply-dipping, high-amplitude bedrock reflector, representing a fault strand. This north-dipping reflector is likely the same feature identified in my analysis. I characterize the strand as a splay fault, antithetic to the frontal fault of the SFZ. This new fault may pose a geologic hazard to the region.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Studying landscape evolution of the Earthís surface is difficult because both tectonic forces and surface processes control its response to perturbation, and ultimately, its shape and form. Researchers often use numerical models to study erosional response to deformation because there are rarely natural settings in which we can evaluate both tectonic activity and topographic response over appropriate time scales (103-105 years). In certain locations, however, geologic conditions afford the unique opportunity to study the relationship between tectonics and topography. One such location is along the Dragonís Back Pressure Ridge in California, where the landscape moves over a structural discontinuity along the San Andreas Fault and landscape response to both the initiation and cessation of uplift can be observed. In their landmark study, Hilley and Arrowsmith (2008) found that geomorphic metrics such as channel steepness tracked uplift and that hillslope response lagged behind that of rivers. Ideal conditions such as uniform vegetation density and similar lithology allowed them to view each basin as a developmental stage of response to uplift only. Although this work represents a significant step forward in understanding landscape response to deformation, it remains unclear how these results translate to more geologically complex settings. In this study, I apply similar methodology to a left bend along the San Andreas Fault in the Santa Cruz Mountains, California. At this location, the landscape is translated through a zone of localized uplift caused by the bend, but vegetation, lithology, and structure vary. I examine the geomorphic response to uplift along the San Andreas Fault bend in order to determine whether predicted landscape patterns can be observed in a larger, more geologically complex setting than the Dragonís Back Pressure Ridge. I find that even with a larger-scale and a more complex setting, geomorphic metrics such as channel steepness index remain useful tools for evaluating landscape evolution through time. Steepness indices in selected streams of study record localized uplift caused by the restraining bend, while hillslope adjustment in the form of landsliding occurs over longer time scales. This project illustrates that it is possible to apply concepts of landscape evolution models to complex settings and is an important contribution to the body of geomorphological study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2013