3 resultados para lightning strike

em University of Washington


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study identifies lineaments that indicate fault activity and strengthens previous interpretations of structures within the eastern extent of the Seattle Fault zone in Bellevue, WA. My investigation has compiled geotechnical subsurface data, high-resolution LiDAR imagery, and ground-penetrating radar to produce strip log sections transecting identified lineaments and depth-to-bedrock maps exposing fault structure. My work incorporates field investigation, multiple publicly available datasets, and subsurface modeling. My results include a map showing twenty-eight identified surface lineaments, five strip-log sections, and interpolated depth-to-bedrock and minimum-depth-to-bedrock maps. Several lineaments identified in the minimum-depth-to-bedrock raster are parallel to the Seattle Fault zone and suggest the presence of small splay faults beneath east Bellevue. These results strengthen previous interpretations of seismic profile data located in the study area. Another lineament identified in the minimum-depth-to-bedrock raster suggest an unmapped tear fault accommodating differential offset along fault strike between Mercer Island and Bellevue. This work also demonstrates the utility of publicly available datasets such as geotechnical subsurface explorations and LiDAR imagery in supplementing geologic investigations in the eastern extent of the Seattle Fault zone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The southwest-facing coastal bluff present at Discovery Park, Seattle, Washington, displays distinctive joints throughout the exposed Lawton Clay Member. Exhibiting a characteristic local stratigraphy of permeable advance outwash over the impermeable proglacial lacustrine clay, this bluff is located in an area of Seattle at high risk from landslides. This project addressed the relationship between the joints observed at this coastal bluff and the coherency of the bluff as a whole, through remote sensing and field measurements. Aerial drone photography taken of the bluff was processed through a photogrammetry software to produce a 3-dimensional Structure from Motion model, allowing for a digital manipulation and broad examination of the bluff not possible by foot. Stereonet plots produced from these measurements provided insight into patterns of varying joint strike along a horizontal transect of the observed bluff face. Taken together, these two visualizations provided a better picture of the possible chicken-and-egg interaction of the joints and bluff topography; they demonstrated the likelihood that the joint formation at the bluff was most likely to be primarily influenced by the local topography of the bluff over other sources of possible tensional stress in the immediate area.