5 resultados para inundation
em University of Washington
Resumo:
This study presents and discusses the tsunami hazard posed by an updated CSZ earthquake scenerio to the coastal communities of Port Angeles and Port Townsend, based on the results of a high resolution GeoClaw simulation with 2/3 arc second resolution (about 20.56 meters) surrounding these towns. In addition, we will also present the results of a coarse regional simulation of the Strait of Juan de Fuca. This coarse study encompasses 28 regions that span the Strait’s coast, including the communities of Anacortes, Bellingham, Friday Harbor, and Victoria, BC in addition to extended areas around Port Angeles and Port Townsend. The finest grid for these 28 regions where we collected results had 2 arc sec resolution (around 62 meters). Finally, we will discuss some inherent uncertainties in the specification of the earthquake scenario, the limitations of the GeoClaw model, and the associated uncertainites in the results.
Resumo:
The focus of this report is is the channel conditions at Vasa Creek, Bellevue, Washington, with regard to kokanee habitat and slope stability. This required a geomorphic and geologic assessment of the stream and riparian corridor along Vasa Creek. I focused my efforts in a 720m study-reach just south of I-90 in which City of Bellevue had no information. My assessment is divided into 3 categories: channel morphology, geology, and landslide hazards. I described the channel morphology by determining the gradient of the channel, longitudinal and cross-channel geometries, grain size distribution, embeddedness observations, type of channel reaches present, and the locations of significant in-channel woody-debris, landslides, scarps, landslide debris, and erosional features. This was done by conducting a longitudinal survey, 7 cross-channel surveys, pebble counts, and visual observations with the aid of a GPS device for mapping. I completed my geological assessment using both field observations and borehole data provided by GeoMapNW. Borehole data provided logs of the subsurface material at specific locations. In the field, I interpreted local geology using material in the channel as well as exposures in the adjacent slope. I completed the landslide hazard assessment using GIS methods supplemented by field observations. GIS methods included the use of aerial LiDAR to discern slope values and locations of features. Features of interest include the locations of scarps, landslides, landslide debris, and erosional features which were observed in the field. I classified 4 slope classes using ArcMap10 along with the locations of previously mapped landslides, scarps, and landslide debris. I describe the risk of slope failure according to the Washington Administration Code definition of critical areas (WAC 365-190-120 6a-i). My results are presented in the form of a map suite containing a channel morphology map, geology map, and landslide hazard map. The channel is a free-formed alluvial plane-bed reach with infrequent step-pools with riffles associated with landslide debris that chokes the channel. Overall I found that there is not the potential for kokanee habitat due flashy behavior (sudden high flow events), landslide inundation, and a lack of favorable conditions within the channel. The updated geologic map displays advance outwash deposits and alluvium present within the study-reach, as opposed to exposures of the Blakeley Formation along with other corrections from borehole data interpretations. The landslide hazard map shows that there are areas at high risk for slope failure along the channel that should be looked into further.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-07
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Thesis (Master's)--University of Washington, 2016-06