2 resultados para artificial surface cracks

em University of Washington


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this guide is to assist investigators conducting geologic hazard assessments with the understanding, detection, and characterization of surface features related to subsidence from underground coal mining. Subsidence related to underground coal mining can present serious problems to new and/or existing infrastructure, utilities, and facilities. For example, heavy equipment driving over the ground surface during construction processes may punch into voids created by sinkholes or cracks, resulting in injury to persons and property. Abandoned underground mines also may be full of water, and if punctured, can flood nearby areas. Furthermore, the integrity of rigid structures such as buildings, dams and bridges may be compromised if mining subsidence results in differential movement at the ground surface. Subsidence of the ground surface is a phenomenon associated with the removal of material at depth, and may occur coincident with mining, gradually over time, or sometimes suddenly, long after mining operations have ceased (Gray and Bruhn, 1984). The spatial limits of underground coal mines may extend for great distances beyond the surface operations of a mine, in some cases more than 10 miles for an individual mine. When conducting geologic hazard assessments, several remote investigation methods can be used to observe surface features related to underground mining subsidence. LiDAR-derived DEMs are generally the most useful method available for identifying these features because the bare earth surface can be viewed. However, due to limitations in the availability of LiDAR data, other methods often need to be considered when investigating surface features related to underground coal mining subsidence, such as Google Earth and aerial imagery. Mine maps, when available, can be viewed in tandem with these datasets, potentially improving the confidence of any possible mining subsidence-related features observed remotely. However, maps for both active and abandoned mines may be incomplete or unavailable. Therefore, it is important to be able to recognize possible surface features related to underground mining subsidence. This guide provides examples of surface subsidence features related to the two principal underground coal mining methods used in the United States: longwall mining and room and pillar mining. The depth and type of mining, geologic conditions, hydrologic conditions, and time are all factors that may influence the type of features that manifest at the surface. This guide provides investigators a basic understanding about the size, character and conditions of various surface features that occur as a result of underground mining subsidence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spectral albedo was measured along a 6 km transect near the Allan Hills in East Antarctica. The transect traversed the sequence from new snow through old snow, firn, and white ice, to blue ice, showing a systematic progression of decreasing albedo at all wavelengths, as well as decreasing specific surface area (SSA) and increasing density. Broadband albedos under clear-sky range from 0.80 for snow to 0.57 for blue ice, and from 0.87 to 0.65 under cloud. Both air bubbles and cracks scatter sunlight; their contributions to SSA were determined by microcomputed tomography on core samples of the ice. Although albedo is governed primarily by the SSA (and secondarily by the shape) of bubbles or snow grains, albedo also correlates highly with porosity, which, as a proxy variable, would be easier for ice sheet models to predict than bubble sizes. Albedo parameterizations are therefore developed as a function of density for three broad wavelength bands commonly used in general circulation models: visible, near-infrared, and total solar. Relevance to Snowball Earth events derives from the likelihood that sublimation of equatorward-flowing sea glaciers during those events progressively exposed the same sequence of surface materials that we measured at Allan Hills, with our short 6 km transect representing a transect across many degrees of latitude on the Snowball ocean. At the equator of Snowball Earth, climate models predict thick ice, or thin ice, or open water, depending largely on their albedo parameterizations; our measured albedos appear to be within the range that favors ice hundreds of meters thick. Citation: