1 resultado para Transmission exaltée

em University of Washington


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mother-to-child transmission of HIV is a unique setting that allows us to explore both the correlates of protective immunity and the characteristics of transmitted variants. This thesis first describes the levels and functional capacity of breast milk HIV-specific antibodies in 19 women with high plasma viral loads. Neutralizing antibodies (Nabs) were detected in breast milk supernatant (BMS) of 4 of 19 women examined, were of low potency and were not associated with infant infection. The low NAb activity in BMS was reflected in binding antibody levels with HIV envelope specific IgG titers being 2.2 log10 lower in BMS versus plasma. In contrast, non- neutralizing antibodies (nNAbs) capable of antibody dependent cell-mediated cytotoxicity (ADCC) were detected in the BMS from all 19 women. BMS ADCC activity was associated with envelope-specific IgG titers (p = 0.014) and was inversely associated with infant infection risk (p = 0.039). Our data indicate that BMS has limited HIV neutralizing activity, however, BMS ADCC activity is a correlate of transmission that may impact infant infection risk. In the second part of this thesis the neutralization sensitivity of 111 variants of diverse subtypes obtained from mothers and infants was determined against 7 HIVspecific broadly neutralizing monoclonal antibodies (mAbs) (NIH45-46w, VRC01, PGT128, PGT121, PG9 PGT145 and b12). Maternal and infant variants did not differ in their neutralization sensitivity to these mAbs and neither did variants from transmitting versus those from non-transmitting women. However, subtype A viruses were iii significantly more sensitive to neutralization by NIH45-46w and VRC01 (p= 0.0001 in both cases) and PGT145 (p=0.03) compared to non-subtype A viruses. Together, NIH45- 46w and PGT128 neutralization profiles resulted in 100% coverage of the variants tested. These data suggest that the epitopes targeted by these mAbs are present and accessible in both circulating and transmitted variants and that a combination of antibodies would provide maximum coverage against diverse subtypes commonly found in HIV endemic regions. Overall, this data suggest that an antibody based HIV vaccine capable of eliciting antibodies of multiple specificities that can mediate ADCC and/or neutralizing activity can provide protection and conquer the genetic diversity displayed by HIV.