4 resultados para Test method
em University of Washington
Resumo:
Two different slug test field methods are conducted in wells completed in a Puget Lowland aquifer and are examined for systematic error resulting from water column displacement techniques. Slug tests using the standard slug rod and the pneumatic method were repeated on the same wells and hydraulic conductivity estimates were calculated according to Bouwer & Rice and Hvorslev before using a non-parametric statistical test for analysis. Practical considerations of performing the tests in real life settings are also considered in the method comparison. Statistical analysis indicates that the slug rod method results in up to 90% larger hydraulic conductivity values than the pneumatic method, with at least a 95% certainty that the error is method related. This confirms the existence of a slug-rod bias in a real world scenario which has previously been demonstrated by others in synthetic aquifers. In addition to more accurate values, the pneumatic method requires less field labor, less decontamination, and provides the ability to control the magnitudes of the initial displacement, making it the superior slug test procedure.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-03
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
A method is presented for accurate measurement of spectral flux-reflectance (albedo) in a laboratory, for media with long optical path lengths, such as snow and ice. The approach uses an acrylic hemispheric dome, which, when placed over the surface being studied, serves two functions: (i) it creates an overcast “sky” to illuminate the target surface from all directions within a hemisphere, and (ii) serves as a platform for measuring incident and backscattered spectral radiances, which can be integrated to obtain fluxes. The fluxes are relative measurements and because their ratio is used to determine flux-reflectance, no absolute radiometric calibrations are required. The dome and surface must meet minimum size requirements based on the scattering properties of the surface. This technique is suited for media with long photon path lengths since the backscattered illumination is collected over a large enough area to include photons that reemerge from the domain far from their point of entry because of multiple scattering and small absorption. Comparison between field and laboratory albedo of a portable test surface demonstrates the viability of this method.