7 resultados para Surveying
em University of Washington
Resumo:
[author abstract] The field of hydrographic surveying is inherently important to achieving a true understanding of the world that underlies the vast bodies of water that cover the earth. In this study I will determine the uncertainties of depth estimates of the seafloor that relate to the survey design and sound velocity. The survey design and collection of sound velocity were all conducted of the coast of Vancouver Island, B.C. near the entrance of the Strait of Juan de Fuca. The assessment will show how the change in sound velocity over time will influence the bathymetric reading, if not corrected for. The differences in bathymetric depth readings will show a correlation to the changes in sound velocity.
Resumo:
Senior thesis written for Oceanography 445
Resumo:
Software is an important infrastructural component of scientific research practice. The work of research often requires scientists to develop, use, and share software in order to address their research questions. This report presents findings from a survey of researchers at the University of Washington in three broad areas: Oceanography, Biology, and Physics. This survey is part of the National Science Foundation funded study Scientists and their Software: A Sociotechnical Investigation of Scientific Software Development and Sharing (ACI-1302272). We inquired about each respondent’s research area and data use along with their use, development, and sharing of software. Finally, we asked about challenges researchers face with and about concerns regarding software’s effect on study replicability. These findings are part of ongoing efforts to develop deeper characterizations of the role of software in twenty-first century scientific research.
Resumo:
Senior thesis written for Oceanography 445
Resumo:
Thesis (Ph.D.)--University of Washington, 2015-12
Resumo:
In September 2013, the Colorado Front Range experienced a five-day storm that brought record-breaking precipitation to the region. As a consequence, many Front Range streams experienced flooding, leading to erosion, debris flows, bank failures and channel incision. I compare the effects that debris flows and flooding have on the channel bar frequency, frequency and location of wood accumulation, and on the shape and size of the channel along two flood impacted reaches located near Estes Park and Glen Haven, Colorado within Rocky Mountain National Park and Arapaho-Roosevelt National Forest: Black Canyon Creek (BCC) and North Fork Big Thompson River (NFBT). The primary difference between the two study areas is that BCC was inundated by multiple debris flows, whereas NFBT only experienced flooding. Fieldwork consisted of recording location and size of large wood and channel bars and surveying reaches to produce cross-sections. Additional observations were made on bank failures in NFBT and the presence of boulders in channel bars in BCC to determine sediment source. The debris flow acted to scour and incise BCC causing long-term alteration. The post-flood channel cross-sectional area is as much as 7 to 23 times larger than the pre-flood channel, caused by the erosion of the channel bed to bedrock and the elimination of riparian vegetation. Large wood was forced out of the stream channel and deposited outside of the bankfull channel. Flooding in NFBT caused bank erosion and widening that contributed sediment to channel bars, but accomplished little stream-bed scour. As a result, there was relatively little damage to mid-channel and riparian vegetation, and most large wood remained within the wetted channel.
Resumo:
Senior thesis written for Oceanography 445