4 resultados para Practice Environment Scale of the Nursing Work Index
em University of Washington
Resumo:
The U.S. National Science Foundation metadata registry under development for the National Science Digital Library (NSDL) is a repertory intended to manage both metadata schemes and schemas. The focus of this draft discussion paper is on the scheme side of the development work. In particular, the concern of the discussion paper is with issues around the creation of historical snapshots of concept changes and their encoding in SKOS. Through framing the problem as we see it, we hope to find an optimal solution to our need for a SKOS encoding of these snapshots. Since what we are seeking to model is concept change, it is necessary at the outset to make it clear that we are not talking about changes to a concept of such a nature that would require the declaration a new concept with its own URI.In the project, we avoid the use of the terms “version” and “versioning” with regard to changes in concepts and reserve their use to the significant changes of schemes as a whole. Significant changes triggering a new scheme version might include changes in scheme documentation that express a significant shift in the purpose, use or architecture of the scheme. We use the term “snapshot” to denote the state of a scheme at identifiable points in time. Thus, snapshots are identifiable views of a scheme that record the incremental changes that have occurred to concepts, relationships among concepts, and scheme documentation since the last snapshot. Aspects of concept change occur that we need to capture and make available both through the registry and through potentially in transmission of a scheme to other registries. We call these capturings “concept instances.”
Resumo:
Studying landscape evolution of the Earthís surface is difficult because both tectonic forces and surface processes control its response to perturbation, and ultimately, its shape and form. Researchers often use numerical models to study erosional response to deformation because there are rarely natural settings in which we can evaluate both tectonic activity and topographic response over appropriate time scales (103-105 years). In certain locations, however, geologic conditions afford the unique opportunity to study the relationship between tectonics and topography. One such location is along the Dragonís Back Pressure Ridge in California, where the landscape moves over a structural discontinuity along the San Andreas Fault and landscape response to both the initiation and cessation of uplift can be observed. In their landmark study, Hilley and Arrowsmith (2008) found that geomorphic metrics such as channel steepness tracked uplift and that hillslope response lagged behind that of rivers. Ideal conditions such as uniform vegetation density and similar lithology allowed them to view each basin as a developmental stage of response to uplift only. Although this work represents a significant step forward in understanding landscape response to deformation, it remains unclear how these results translate to more geologically complex settings. In this study, I apply similar methodology to a left bend along the San Andreas Fault in the Santa Cruz Mountains, California. At this location, the landscape is translated through a zone of localized uplift caused by the bend, but vegetation, lithology, and structure vary. I examine the geomorphic response to uplift along the San Andreas Fault bend in order to determine whether predicted landscape patterns can be observed in a larger, more geologically complex setting than the Dragonís Back Pressure Ridge. I find that even with a larger-scale and a more complex setting, geomorphic metrics such as channel steepness index remain useful tools for evaluating landscape evolution through time. Steepness indices in selected streams of study record localized uplift caused by the restraining bend, while hillslope adjustment in the form of landsliding occurs over longer time scales. This project illustrates that it is possible to apply concepts of landscape evolution models to complex settings and is an important contribution to the body of geomorphological study.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-03
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06