6 resultados para Point interpolation method
em University of Washington
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Background and Objectives: Improved ultrasound and needle technology make popliteal sciatic nerve blockade a popular anesthetic technique and imaging to localize the branch point of the common peroneal and posterior tibial components is important because successful blockade techniques vary with respect to injection of the common trunk proximally or separate injections distally. Nerve stimulation, ultrasound, cadaveric and magnetic resonance studies demonstrate variability in distance and discordance between imaging and anatomic examination of the branch point. The popliteal crease and imprecise, inaccessible landmarks render measurement of the branch point variable and inaccurate. The purpose of this study was to use the tibial tuberosity, a fixed bony reference, to measure the distance of the branch point. Method: During popliteal sciatic nerve blockade in the supine position the branch point was identified by ultrasound and the block needle was inserted. The vertical distance from the tibial tuberosity prominence and needle insertion point was measured. Results: In 92 patients the branch point is a mean distance of 12.91 cm proximal to the tibial tuberosity and more proximal in male (13.74 cm) than female patients (12.08 cm). Body height is related to the branch point distance and is more proximal in taller patients. Separation into two nerve branches during local anesthetic injection supports notions of more proximal neural anatomic division. Limitations: Imaging of the sciatic nerve division may not equal its true anatomic separation. Conclusion: Refinements in identification and resolution of the anatomic division of the nerve branch point will determine if more accurate localization is of any clinical significance for successful nerve blockade.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
A method is presented for accurate measurement of spectral flux-reflectance (albedo) in a laboratory, for media with long optical path lengths, such as snow and ice. The approach uses an acrylic hemispheric dome, which, when placed over the surface being studied, serves two functions: (i) it creates an overcast “sky” to illuminate the target surface from all directions within a hemisphere, and (ii) serves as a platform for measuring incident and backscattered spectral radiances, which can be integrated to obtain fluxes. The fluxes are relative measurements and because their ratio is used to determine flux-reflectance, no absolute radiometric calibrations are required. The dome and surface must meet minimum size requirements based on the scattering properties of the surface. This technique is suited for media with long photon path lengths since the backscattered illumination is collected over a large enough area to include photons that reemerge from the domain far from their point of entry because of multiple scattering and small absorption. Comparison between field and laboratory albedo of a portable test surface demonstrates the viability of this method.