3 resultados para Measurement Variability

em University of Washington


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and Objectives: Improved ultrasound and needle technology make popliteal sciatic nerve blockade a popular anesthetic technique and imaging to localize the branch point of the common peroneal and posterior tibial components is important because successful blockade techniques vary with respect to injection of the common trunk proximally or separate injections distally. Nerve stimulation, ultrasound, cadaveric and magnetic resonance studies demonstrate variability in distance and discordance between imaging and anatomic examination of the branch point. The popliteal crease and imprecise, inaccessible landmarks render measurement of the branch point variable and inaccurate. The purpose of this study was to use the tibial tuberosity, a fixed bony reference, to measure the distance of the branch point. Method: During popliteal sciatic nerve blockade in the supine position the branch point was identified by ultrasound and the block needle was inserted. The vertical distance from the tibial tuberosity prominence and needle insertion point was measured. Results: In 92 patients the branch point is a mean distance of 12.91 cm proximal to the tibial tuberosity and more proximal in male (13.74 cm) than female patients (12.08 cm). Body height is related to the branch point distance and is more proximal in taller patients. Separation into two nerve branches during local anesthetic injection supports notions of more proximal neural anatomic division. Limitations: Imaging of the sciatic nerve division may not equal its true anatomic separation. Conclusion: Refinements in identification and resolution of the anatomic division of the nerve branch point will determine if more accurate localization is of any clinical significance for successful nerve blockade.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This file accompanies “NAmer2014SnowBC_Dohertyetal_v1.xlsx”, which contains data on black carbon (BC) and other light-absorbing particles in snow in Utah and Idaho, for samples collected January-March 2014 in Jan/Feb 2013 and 2014 in Utah. Data are available as an Excel file with headers, or as a comma-separated data file, with no headers. There is one entry per layer of snow sampled. All entries (other than column titles in the .xlsx) are numeric. Detailed information on our measurements can be found in a series of publications, as given below.  Description of the instrument and method used to make the measurements: Grenfell, T. C., S. J. Doherty, A. D. Clarke, and S. G. Warren, Spectrophotometric determination of absorptive impurities in snow, Appl. Opt., 50(14), pp.2037-2048, 2011.  Summary and discussion of dataset “NAmer2014SnowBC_Dohertyetal.xlsx”, including maps of sample locations: Doherty, S. J., D. A. Hegg, P. K. Quinn, J. E. Johnson, J. P. Schwarz, C. Dang and S. G. Warren, Causes of variability in light absorption by particles in snow at sites in Idaho and Utah, J. Geophys. Res. Atmos., 121, doi:10.1002/2015JD024375, 2016. Note that the measurement and analysis techniques used to produce these data were also used in a broad Arctic survey (2006-2010) of BC and other light-absorbing particles snow, as reported here: Doherty, S. J., S. G. Warren, T. C. Grenfell, A. D. Clarke, and R. E. Brandt: Light-absorbing impurities in Arctic snow, Atmos. Chem. Phys., 10, 11647-11680, doi:10.5194/acp-10-11647-2010, 2010. http://www.atmos-chem-phys.net/10/11647/2010/acp-10-11647-2010.html