15 resultados para Long Island Sound
em University of Washington
Resumo:
Senior thesis written for Oceanography 444
Resumo:
Senior thesis written for Oceanography 445
Resumo:
Senior thesis written for Oceanography 445
Resumo:
Senior thesis written for Oceanography 445
Resumo:
Senior thesis written for Oceanography 445
Resumo:
Senior thesis written for Oceanography 445
Resumo:
Senior thesis written for Oceanography 445
Resumo:
Senior thesis written for Oceanography 445
Resumo:
Senior thesis written for Oceanography 445
Resumo:
I present results of my evaluation to identify topographic lineaments that are potentially related to post-glacial faulting using bare-earth LiDAR topographic data near Ridley Island, British Columbia. The purpose of this evaluation has been to review bare-earth LiDAR data for evidence of post-glacial faulting in the area surrounding Ridley Island and provide a map of the potential faults to review and possibly field check. My work consisted of an extensive literature review to understand the tectonic, geologic, glacial and sea level history of the area and analysis of bare-earth LiDAR data for Ridley Island and the surrounding region. Ridley Island and the surrounding north coast of British Columbia have a long and complex tectonic and geologic history. The north coast of British Columbia consists of a series of accreted terranes and some post-accretionary deposits. The accreted terranes were attached to the North American continent during subduction of the Pacific Plate between approximately 200 Ma and 10 Ma. The terrane and post-accretionary deposits are metamorphosed sedimentary, volcanic and intrusive rocks. The rocks have experienced significant deformation and been intruded by plutonic bodies. Approximately 10 Ma subduction of the Pacific Plate beneath the North America Plate ceased along the central and north coast of British Columbia and the Queen Charlotte Fault Zone was formed. The Queen Charlotte Fault Zone is a transform-type fault that separates the Pacific Plate from the North America Plate. Within the past 1 million years, the area has experienced multiple glacial/interglacial cycles. The most recent glacial cycle occurred approximately 23,000 to 13,500 years ago. Few Quaternary deposits have been mapped in the area. The vast majority of seismicity around the northwest coast of British Columbia occurs along the Queen Charlotte Fault Zone. Numerous faults have been mapped in the area, but there is currently no evidence to suggest these faults are active (i.e. have evidence for post-glacial surface displacement or deformation). No earthquakes have been recorded within 50 km of Ridley Island. Several small earthquakes (less than magnitude 6) have been recorded within 100 km of the island. These earthquakes have not been correlated to active faults. GPS data suggests there is ongoing strain in the vicinity of Ridley Island. The strain has the potential to be released along faults, but the calculated strain may be a result of erroneous data or accommodated aseismically. Currently, the greatest known seismic hazard to Ridley Island is the Queen Charlotte Fault Zone. LiDAR data for Ridley Island, Digby Island, Lelu Island and portions of Kaien Island, Smith Island and the British Columbia mainland were reviewed and analyzed for evidence of postglacial faulting. The data showed a strong fabric across the landscape with a northwest-southeast trend that appears to mirror the observed foliation in the area. A total of 80 potential post-glacial faults were identified. Three lineaments are categorized as high, forty-one lineaments are categorized as medium and thirty-six lineaments are categorized as low. The identified features should be examined in the field to further assess potential activity. My analysis did not include areas outside of the LiDAR coverage; however faulting may be present there. LiDAR data analysis is only useful for detecting faults with surficial expressions. Faulting without obvious surficial expressions may be present in the study area.
Resumo:
Landslides often occur on slopes rendered unstable by underlying geology, geomorphology, hydrology, weather-climate, slope modifications, or deforestation. Unfortunately, humans commonly exacerbate such unstable conditions through careless or imprudent development practices. Due to local geology, geography, and climatic conditions, Puget Sound of western Washington State is especially landslide-prone. Despite this known issue, detailed analyses of landslide risks for specific communities are few. This study aims to classify areas of high landslide risk on the westerly bluffs of the 7.5 minute Freeland quadrangle based on a combined approach: mapping using LiDAR imagery and the Landform Remote Identification Model (LRIM) to identify landslides, and implementation of the Shallow Slope Stability Model (SHALSTAB) to establish a landslide exceedance probability. The objective is to produce a risk assessment from two shallow landslide scenarios: (1) minimum bluff setback and runout and (2) maximum bluff setback and runout. A simple risk equation that takes into account the probability of hazard occurrence with physical and economic vulnerability (van Westen, 2004) was applied to both scenarios. Results indicate an possible total loss as much as $32.6b from shallow landslides, given a setback of 12 m and a runout of 235 m.
Resumo:
On the morning of March 27th, 2013, a small portion of a much larger landslide complex failed on the western shoreline of central Whidbey Island, Island County, Washington. This landslide, known as the Ledgewood-Bonair Landslide (LB Landslide), mobilized as much as 150,000 cubic meters of unconsolidated glacial sediment onto the coastline of the Puget Sound (Slaughter et al., 2013, Geotechnical Engineering Services, 2013). This study aims to determine how sediment from the Ledgewood-Bonair Landslide has acted on the adjacent beaches 400 meters to the north and south, and specifically to evaluate the volume of sediment contributed by the slide to adjacent beaches, how persistent bluff-derived accretion has been on adjacent beaches, and how intertidal grain sizes changed as a result of the bluff-derived sediment, LiDAR imagery from 2013 and 2014 were differenced and compared to beach profile data and grain size photography. Volume change results indicate that of the 41,850 cubic meters of sediment eroded at the toe of the landslide, 8.9 percent was redeposited on adjacent beaches within 1 year of the landslide. Of this 8.9 percent, 6.3 percent ended up on the north beach and 2.6 percent ended up on the south beach. Because the landslide deposit was primarily sands, silts, and clays, it is reasonable to assume that the remaining 91.1 percent of the sediment eroded from the landslide toe was carried out into the waters of the Puget Sound. Over the course of the two-year study, measurable accretion is apparent up to 150 meters north and 100 meters south of the landslide complex. Profile data also suggests that the most significant elevation changes occurred within the first two and half months since the landslides occurrence. The dominant surficial grain size of the beach soon after the landslide was coarse-sand; in the years following the landslide, 150 meters north of the toe the beach sediment became finer while 100 meters south of the toe the beach sediment became coarser. Overall, the LB Landslide has affected beach profile and grain size only locally, within 150 meters of the landslide toe.
Resumo:
Senior thesis written for Oceanography 445
Resumo:
Senior thesis written for Oceanography 445
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08