3 resultados para GRADIENT CORRECTIONS

em University of Washington


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The focus of this report is is the channel conditions at Vasa Creek, Bellevue, Washington, with regard to kokanee habitat and slope stability. This required a geomorphic and geologic assessment of the stream and riparian corridor along Vasa Creek. I focused my efforts in a 720m study-reach just south of I-90 in which City of Bellevue had no information. My assessment is divided into 3 categories: channel morphology, geology, and landslide hazards. I described the channel morphology by determining the gradient of the channel, longitudinal and cross-channel geometries, grain size distribution, embeddedness observations, type of channel reaches present, and the locations of significant in-channel woody-debris, landslides, scarps, landslide debris, and erosional features. This was done by conducting a longitudinal survey, 7 cross-channel surveys, pebble counts, and visual observations with the aid of a GPS device for mapping. I completed my geological assessment using both field observations and borehole data provided by GeoMapNW. Borehole data provided logs of the subsurface material at specific locations. In the field, I interpreted local geology using material in the channel as well as exposures in the adjacent slope. I completed the landslide hazard assessment using GIS methods supplemented by field observations. GIS methods included the use of aerial LiDAR to discern slope values and locations of features. Features of interest include the locations of scarps, landslides, landslide debris, and erosional features which were observed in the field. I classified 4 slope classes using ArcMap10 along with the locations of previously mapped landslides, scarps, and landslide debris. I describe the risk of slope failure according to the Washington Administration Code definition of critical areas (WAC 365-190-120 6a-i). My results are presented in the form of a map suite containing a channel morphology map, geology map, and landslide hazard map. The channel is a free-formed alluvial plane-bed reach with infrequent step-pools with riffles associated with landslide debris that chokes the channel. Overall I found that there is not the potential for kokanee habitat due flashy behavior (sudden high flow events), landslide inundation, and a lack of favorable conditions within the channel. The updated geologic map displays advance outwash deposits and alluvium present within the study-reach, as opposed to exposures of the Blakeley Formation along with other corrections from borehole data interpretations. The landslide hazard map shows that there are areas at high risk for slope failure along the channel that should be looked into further.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Senior thesis written for Oceanography 445

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When NaCl precipitates out of a saturated solution, it forms anhydrous crystals of halite at temperatures above +0.11?C, but at temperatures below this threshold it instead precipitates as the dihydrate ‘‘hydrohalite,’’ NaCl * 2H2O. When sea ice is cooled, hydrohalite begins to precipitate within brine inclusions at about -23C. In this work, hydrohalite crystals are examined in laboratory experiments: their formation, their shape, and their response to warming and desiccation. Sublimation of a sea ice surface at low temperature leaves a lag deposit of hydrohalite, which has the character of a fine powder. The precipitation of hydrohalite in brine inclusions raises the albedo of sea ice, and the subsequent formation of a surface accumulation further raises the albedo. Although these processes have limited climatic importance on the modern Earth, they would have been important in determining the surface types present in regions of net sublimation on the tropical ocean in the cold phase of a Snowball Earth event. However, brine inclusions in sea ice migrate downward to warmer ice, so whether salt can accumulate on the surface depends on the relative rates of sublimation and migration. The migration rates are measured in a laboratory experiment at temperatures from -2C to -32C; the migration appears to be too slow to prevent formation of a salt crust on Snowball Earth.